Skip to main content Accessibility help
×
Home

GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner

  • L. YIN (a1), B. J. ALBRIGHT (a1), B. M. HEGELICH (a1) and J. C. FERNÁNDEZ (a1)

Abstract

A new laser-driven ion acceleration mechanism has been identified using particle-in-cell (PIC) simulations. This mechanism allows ion acceleration to GeV energies at vastly reduced laser intensities compared with earlier acceleration schemes. The new mechanism, dubbed “Laser Break-out Afterburner” (BOA), enables the acceleration of carbon ions to greater than 2 GeV energy at a laser intensity of only 1021 W/cm2, an intensity that has been realized in existing laser systems. Other techniques for achieving these energies in the literature rely upon intensities of 1024 W/cm2 or above, i.e., 2–3 orders of magnitude higher than any laser intensity that has been demonstrated to date. Also, the BOA mechanism attains higher energy and efficiency than target normal sheath acceleration (TNSA), where the scaling laws predict carbon energies of 50 MeV/u for identical laser conditions. In the early stages of the BOA, the carbon ions accelerate as a quasi-monoenergetic bunch with median energy higher than that realized recently experimentally.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner
      Available formats
      ×

Copyright

Corresponding author

Address correspondence and reprint requests to: B. M. Hegelich, Los Alamos National Laboratory, Los Alamos, New Mexico 87545. E-mail: hegelich@lanl.gov

References

Hide All

REFERENCES

Albright, B.J., Yin, L., Kwan, T.J.T. Bowers, Kevin J., Hegelich, B.M., &Fernández, J.C. (2006). Theory and modeling of ion acceleration from the interaction of ultra-intense lasers with solid density targets. J. Phys. 4, in press.
Borghesi, M., Audebert, P., Bulanov, S.V., Cowan, T., Fuchs, J., Gauthier, J.C., MacKinnon, A.J., Patel, P.K., Pretzler, G., Romagnani, L., Schiavi, A., Toncian, T. & Willi, O. (2005). High-intensity laser-plasma interaction studies employing laser-driven proton probes. Laser Part. Beams 23, 291295.
Chen, H. & Wilks, S.C. (2005). Evidence of enhanced effective hot electron temperatures in ultraintense laser-solid interactions due to reflexing. Laser Part. Beams 23, 411416.
Chirila, C.C., Joachain, C.J., Kylstra, N.J. & Potvliege, R.M. (2004). Interaction of ultra-intense laser pulses with relativistic ions. Laser Part. Beams 22, 203206.
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003/14.
Fernández, J.C., Hegelich, B.M., Cobble, J.A., Flippo, K.A., Letzring, S.A., Johnson, R.P., Gautier, D.C., Shimada, T., Kyrala, G.A., Wang, Y.Q., Wetteland, C.J. & Schreiber, J. (2005). Laser-ablation treatment of short-pulse laser targets: Toward an experimental program on energetic-ion interactions with dense plasmas. Laser Part. Beams 23, 267273.
Flippo, K.A., Hegelich, B.M., Schmitt, M.J., Cobble, J.A., Gauthier, D.C., Gibson, R., Johnson, R., Letzring, S. & Fernández, J.C. (2006). Ultrashort-laser-produced heavy ion generation via target laser-ablation cleaning. J. Phys. 4, in press.
Fuchs, J., Antici, P., d'Humiéres, E., Lefebvre, E., Borghesi, M., Brambrink, E., Cecchetti, C., Toncian, T., Pépin, H. & Audebert, P. (2006a). Ion acceleration using high-contrast ultra-intense lasers. J. Phys. 4, in press.
Fuchs, J., Antici, P., D'Humiéres, E., Lefebvre, E., Borghesi, M. Brambrink, E. Cecchetti, C.A. Kaluza, M. Malka, V. Manclossi, M. Meyroneinc, S. Mora, P. Schreiber, J. Toncian, T., Pépin, H., &Audebert, P. (2006b). Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys. 2, 4854.
Habs, D., Pretzler, G., Pukhov, A. & Meyer-Ter-Vehn, J. (2001). Laser acceleration of electrons and ions and intense secondary particle generation. Proc. Part. Nucl. Phys. 46, 375377.
Hartmann, G.H., Jakel, O., Heeg, P., Karger, C.P. & Kriessbach, A. (1999). Determination of water absorbed dose in a carbon ion beam using thimble ionization chambers. Phys. Med. Bio. 44, 11931206.
Hatchett, Stephen P., Brown, Curtis G., Cowan, Thomas E., Henry, Eugene A., Johnson, Joy S., Key, Michael H., Koch, Jeffrey A., Langdon, A. Bruce, Lasinski, Barbara F., Lee, Richard W., Mackinnon, Andrew J., Pennington, Deanna M., Perry, Michael D., Phillips, Thomas W., Roth, Markus, Sangster, T. Craig, Singh, Mike S., Snavely, Richard A., Stoyer, Mark A., Wilks, Scott C. & Yasuike, Kazuhito (2000). Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7, 20762082.
Hegelich, B.M., Albright, B., Audebert, P., Blazevic, A., Brambrink, E., Cobble, J., Cowan, T., Fuchs, J., Gauthier, J.C., Gautier, C., Geissel, M., Habs, D., Johnson, R., Karsch, S., Kemp, A., Letzring, S., Roth, M., Schramm, U., Schreiber, J., Witte, K.J. & Fernández, J.C. (2005). Spectral properties of laser-accelerated mid-Z MeV/u ion beams. Phys. Plasmas 12, 056314/15.
Hegelich, M., Karsch, S., Pretzler, G., Habs, D., Witte, K., Guenther, W., Allen, M., Blazevic, A., Fuchs, J., Gauthier, J.C., Geissel, M., Audebert, P., Cowan, T. & Roth, M. (2002). MeV ion jets from short-pulse-laser interaction with thin foils. Phys. Rev. Lett. 89, 085002/14.
Hegelich, B.M., Albright, B.J., Cobble, J., Johnson, R., Letzring, S., Ruhl, H., Schreiber, J. & Fernández, J.C. (2006). Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441444.
Honrubia, J. & Tikhonchuk, V. (2004). Guest editors' preface: Workshop on simulations of ultra intense laser beams interaction with matter. Laser Part. Beams 22, 95.
Maksimchuk, A., Gu, S., Flippo, K., Umstadter, D. & Bychenkov, V.Y. (2000). Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84, 41084111.
Mason, R.J., Dodd, E.S. & Albright, B.J. (2005). Hot-electron surface retention in intense short-pulse laser-matter interactions. Phys. Rev. E 72, 015401(R)/14.
Passoni, M & Lontano, M. (2004). One-dimensional model of the electrostatic ion acceleration in the ultraintense laser-solid interaction. Laser Part. Beams 22, 163169.
Passoni, M., Tikhonchuk, V.T., Lontano, M. & Bychenkov, V.Y. (2004). Charge separation effects in solid targets and ion acceleration with a two-temperature electron distribution. Phys. Rev. E 69, 026411/111.
Roth, M., Brambrink, E., Audebert, P., Blazevic, A., Clarke, R., Cobble, J., Cowan, T.E., Fernández, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., MacKinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.
Temporal, M., Honrubia, J.J. & Atzeni, S. (2002). Numerical study of fast ignition of ablatively imploded deuterium-tritium fusion capsules by ultra-intense proton beams. Phys. Plasmas 9, 30983107.
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542549.
Yee, K.S. (1966). Numerical Solution of Initial Boundary Value Problems Involving Maxwells Equations in Isotropic Media. IEEE Transactions on Antennas and Propagation 14, 302305.

Keywords

Related content

Powered by UNSILO

GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner

  • L. YIN (a1), B. J. ALBRIGHT (a1), B. M. HEGELICH (a1) and J. C. FERNÁNDEZ (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.