Skip to main content Accessibility help

Generation of proton beams from two-species targets irradiated by a femtosecond laser pulse of ultra-relativistic intensity

  • J. Domański (a1), J. Badziak (a1) and S. Jabłoński (a1)


The paper presents results of two-dimensional particle-in-cell simulations of ion beam acceleration at the interactions of a 130-fs laser pulse of intensity in the range 1021–1023 W/cm2, predicted for the Extreme Light Infrastructure lasers, with thin hydrocarbon (CH) or erbium hydride (ErH3) targets. A special attention is paid to the effect of the laser pulse intensity and polarization (linear, circular) on the proton energy spectrum, the proton beam spatial distribution and the proton pulse shape and intensity. It is shown that for the low laser intensities (~1021 W/cm2) considerably higher proton beam parameters (proton energies, beam intensities) are achieved for the ErH3 target for both polarizations and the effect of polarization on the beam parameters is significant (higher parameters are achieved for the linear polarization). However, for the highest, ultra-relativistic intensities (~1023 W/cm2) higher proton beam parameters are attained for the CH target and the effect of polarization on these parameters is relatively low. In this case, for both polarizations quasi-monoenergetic proton beams are generated from the CH target of the mean proton energy ~2 GeV and $dE_{\rm p} /\bar E_{\rm p} \approx 0.3$ for the linear polarization and $dE_{\rm p} /\bar E_{\rm p} \approx 0.2$ for the circular one. At the highest laser intensities also the proton pulse peak intensities are higher for the CH target and for both polarizations they reach values well above 1021 W/cm2. In the paper, the properties of proton beam generation indicated above are discussed in detail and a physical explanation of the observed effects is done.


Corresponding author

Address correspondence and reprint requests to: J. Domański, Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw, Poland. E-mail:


Hide All
Badziak, J. (2007). Laser-driven generation of fast particles. Opto-Electron. Rev. 15, 1.
Badziak, J., Antici, P., Fuchs, J., Jabłoński, S., Mancic, A., Parys, P., Rosiński, M., Suchańska, R., Szydłowski, A. & Wołowski, J. (2008 b). Laser-induced generation of ultraintense proton beams for high energy-density science. AIP Conf. Proc. 1024, 6377.
Badziak, J., Borodziuk, S., Pisarczyk, T., Chodukowski, T., Krousky, E., Masek, J., Skala, J., Ullschmied, J. & Rhee, Y.-J. (2010). Highly efficient acceleration and collimation of high- density plasma using laser-induced cavity pressure. Appl. Phys. Lett. 96, 251502.
Badziak, J., Jabłoński, S., Parys, P., Rosiński, M., Wołowski, J., Szydłowski, A., Antici, P., Fuchs, J. & Mancic, A. (2008 a). Ultraintense proton beams from laser-induced skin-layer ponderomotive acceleration. J. Appl. Phys. 104, 063310.
Badziak, J., Jabłoński, S., Pisarczyk, T., Rączka, P., Krousky, E., Liska, R., Kucharik, M., Chodukowski, T., Kalinowska, Z., Parys, P., Rosiński, M., Borodziuk, S. & Ullschmied, J. (2012). Highly efficient accelerator of dense matter using laser-induced cavity pressure acceleration. Phys. Plasmas 19, 053105.
Borghesi, M., Fuchs, J., Bulanov, S.V., Mackinnon, A.J., Patel, P.K. & Roth, M. (2006). Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Technol. 49, 412.
Bulanov, S.V., Esirkepov, T.Zh., Khoroshkov, V.S., Kuznetsov, A.V. & Pegoraro, F. (2002). Oncological hadrontherapy with laser ion accelerators. Phys. Lett. A 299, 240.
Danson, C., Hillier, D., Hopps, N. & Neely, D. (2015). Petawatt class lasers worldwide. High Power Laser Sci. Eng. 3, e3.
Denavit, J. (1992). Absorption of high-intensity subpicosecond lasers on solid density targets. Phys. Rev. Lett. 69, 3052.
Domański, J., Badziak, J. & Jabłoński, S. (2016 a). Numerical studies of petawatt laser-driven proton generation from two-species targets using a two-dimensional particle-in-cell code. J. Instrum. 11, C04009.
Domański, J., Badziak, J. & Jabłoński, S. (2016 b). Enhanced efficiency of femtosecond laser-driven proton generation from a two-species target with heavy atoms. Laser Part. Beams 34, 294298.
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003.
Fernandez, J.C., Albright, B.J., Beg, F.N., Foord, M.E., Hegelich, B.M., Honrubia, J.J., Roth, M., Stephens, R.B. & Yin, L. (2014). Fast ignition with laser-driven proton and ion beams. Nucl. Fusion 54, 054006.
Foord, M.E., Mackinnon, A.J., Patel, P.K., MacPhee, A.G., Ping, Y., Tabak, M. & Town, R.P.J. (2008). Enhanced proton production from hydride-coated foils. J. Appl. Phys. 103, 056106.
Ledingham, K.W.D. & Galster, W. (2010). Laser-driven particle and photon beams and some applications. New J. Phys. 12, 045005.
Liseykina, T.V., Borghesi, M., Macchi, A. & Tuveri, S. (2008). Radiation pressure acceleration by ultraintense laser pulses. Plasma Phys. Control. Fusion 50, 124033.
Macchi, A., Borghesi, M. & Passoni, M. (2013). Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751.
Macchi, A., Cattani, F., Liseykina, T.V. & Cornalti, F. (2005). Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94, 165003.
Patel, P.K., MacKinnon, A.J., Key, M.H., Cowan, T.E., Foord, M.E., Allen, M., Price, D.F., Ruhl, H., Springer, P.T. & Stephens, R. (2003). Isochoric heating of solid-density matter with an ultrafast proton. Phys. Rev. Lett. 91, 125004.
Robinson, A.P.L., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2008). Radiation pressure acceleration of thin foil with circular polarized laser pulse. New J. Phys. 10, 013021.
Sgattoni, A., Sinigardi, S. & Macchi, A. (2014). High energy gain in three-dimensional simulations of light sail acceleration. Appl. Phys. Lett. 105, 084105.
Silva, L.O., Marti, M., Davies, J.R. & Fonseca, R.A. (2004). Proton shock acceleration in laser–plasma interactions. Phys. Rev. Lett. 92, 015002.
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542.
Yin, L., Albright, B.J., Hegelich, B.M., Browers, K.J., Flippo, K.A., Kwan, T.J.T. & Fernandez, J.C. (2007). Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets. Phys. Plasmas 14, 056706.
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: the laser break-out afterburner. Laser Part. Beams, 24, 291298. doi: 10.1017/S0263034606060459.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed