Hostname: page-component-6d856f89d9-4thr5 Total loading time: 0 Render date: 2024-07-16T06:37:18.571Z Has data issue: false hasContentIssue false

Generation of a large cross-section electron beam in the vacuum diode with rod current returns

Published online by Cambridge University Press:  19 September 2013

E.N. Abdullin*
Affiliation:
Institute of High Current Electronics SB RAS, Tomsk, Russia
N.G. Ivanov
Affiliation:
Institute of High Current Electronics SB RAS, Tomsk, Russia
V.F. Losev
Affiliation:
Institute of High Current Electronics SB RAS, Tomsk, Russia Tomsk Polytechnic University, Tomsk, Russia
A.V. Morozov
Affiliation:
Institute of High Current Electronics SB RAS, Tomsk, Russia
*
Address correspondence and reprint requests to: E.N. Abdullin, Institute of High Current Electronics SB RAS, 2/3 Akademichesky Ave., Tomsk 634055, Russia. E-mail: abdullin@lhfe.hcei.tsc.ru

Abstract

The results of the experimental studies of the high-power e-beam accelerator producing six radially convergent electron beams are presented. The studies are aimed to increase the energy of the electron beam transported through the foil into the gas-filled chamber by using the rod-shaped current returns in the diode at small inter-electrode gaps. Installation of these rod current returns shields the periphery regions of the diode from the current field in the central part thus reducing the field at the diode edge. The inter-electrode distance, the shape, and the sizes of the cathodes are chosen by taking into account the magnetic field reduction in the diode. It is shown that in such type of the diode the electrons impact the foil almost normally to its surface, and the electron beams enter the output windows completely. Such type of the diode allows increasing the efficiency of the electron beam energy transfer into the gas by 30%.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdullin, E.N. & Morozov, A.V. (2013). Application of rod return-current conductors for decreasing the magnetic field of the vacuum diode. Instrum. Exper. Techniq. 56, 420427.CrossRefGoogle Scholar
Angood, S., Bailly-Salins, R., Hirst, G.J., Kidd, A.K. & Shaw, M.J. (1992). The TITANIA amplifier module design. Proc. 3rd Workshop on KrF Laser Technology. pp. 13. Rutherford Appleton Laboratory, UK.Google Scholar
Alexeev, S.V., Ivanov, N.G., Kovalchuk, B.M., Losev, V.F., Mesyats, G.A., Mikheev, L.D., Panchenko, Yu.N., Puchikin, A.V., Ratakhin, N.A. & Yastremsky, A.G. (2010). Research of femtosecond laser pulse amplification in photochemically driven XeF(C-A) Active Medium. Proc. 16th Int. Symp. on High Current Electronics. (Kovalchuk, B. & Remnev, G., Eds.), Tomsk, Russia, 593–595.Google Scholar
Alexeev, S.V., Aristov, A.I., Ivanov, N.G., Kovalchuk, B.M., Losev, V.F., Mesyats, G.A., Mikheev, L.D., Panchenko, Yu.N. & Ratakhin, N.A. (2013). Multi-terawatt femtosecond laser system on visible range based on a photochemical XeF(C-A) amplifier. Laser Part. Beams 31, 1721.Google Scholar
Kharlov, A.V., Kovalchuk, B.M., Volkov, S.N., Zherlitsyn, A.A., Bastrikov, A.N., Zorin, V.B., Kiselev, V.N., Smorudov, G.V. & Tsoy, N.V. (2010). Electron accelerator for pumping of the Xe2 Lamp. Proc. 16th Int. Symp. on High Current Electronics. (Kovalchuk, B. & Remnev, G., Eds.), Tomsk, Russia, 7–10.Google Scholar
Kidd, A.K., Angood, S.M., Bailly-Salins, R., Carr, P.S., Hirst, G.J. & Shaw, M.J. (1993). The TITANIA amplifier module design. Pulsed Power System for TITANIA KrF Laser Module. Proc. 9th IEEE Int. Pulsed Power Conf. (Prestwich, K. & Baker, W., Eds.), Albuquerque, New Mexico, 2, 718–722.Google Scholar
Kovalchuk, B.M., Abdullin, E.N., Grishin, D.M., Gubanov, V.P., Zorin, V.B., Kim, A.A., Kumpjak, E.V., Morozov, A.V., Skakun, V.S., Stepchenko, A.S., Tarasenko, V.F., Tolkachev, V.S., Schanin, P.M. & Tsoy, N.V. (2003). Linear transformer accelerator for the excimer laser. Laser Part. Beams 21, 295299.CrossRefGoogle Scholar
Sethian, J.D., Pawley, C.J., Obenschain, S.P., Gerber, K.A., Serlin, V., Sullivan, C., Lehecka, T., Webster, W.D., Smith, I.D., Corcoran, P.A. & Altes, R.A. (1995). The NIKE electron beam-pumped KrF laser amplifiers. Proc. 10th IEEE Int. Pulsed Power Conf. (Baker, W. & Cooperstein, G., Eds.), Albuquerque, New Mexico, 1, 625–633.Google Scholar
Sethian, J.D., Hegeler, F., Myers, M., Friedman, M., Obenschain, S., Lehmberg, R., Giuliani, J., Kepple, P., Swanekamp, S., Smith, I., Weidenheimer, D., Morton, D., Schlitt, L., Smilgys, R. & Searles, S. (2001). The Electra KrF laser program. Proc. PPPS-2001, Pulsed Power Plasma Science-2001. (Reinovsky, R. & Newton, M., Eds.), Las Vegas, NV, 1, 232–236.Google Scholar