Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-19T06:28:39.833Z Has data issue: false hasContentIssue false

For the generation of an intense isolated pulse in hard X-ray region using X-ray free electron laser

Published online by Cambridge University Press:  07 June 2012

Sandeep Kumar
Affiliation:
Department of Physics, Center for Attosecond Science and Technology, Pohang University of Science and Technology, Pohang, Kyungbuk, South Korea Pohang Accelerator Laboratory, Pohang, Kyungbuk, South Korea
Heung-Sik Kang
Affiliation:
Pohang Accelerator Laboratory, Pohang, Kyungbuk, South Korea
Dong-Eon Kim*
Affiliation:
Department of Physics, Center for Attosecond Science and Technology, Pohang University of Science and Technology, Pohang, Kyungbuk, South Korea Max Planck Center for Attosecond Science, Pohang, Kyungbuk, South Korea
*
Address correspondence and reprint requests to: Dong-Eon Kim, Department of Physics, Center for Attosecond Science and Technology, Pohang University of Science and Technology, San 31 Hyoja-dong, Pohang, Kyungbuk, 790-784, South Korea. E-mail: kimd@postech.ac.kr

Abstract

For a real, meaningful pump-probe experiment with attosecond temporal resolution, an intense isolated attosecond pulse is in demand. For that purpose we report the generation of an intense isolated attosecond pulse, especially in X-ray region using a current-enhanced self-amplified spontaneous emission in a free electron laser (FEL). We use a few cycle laser pulse to manipulate the electron-bunch inside a two-period planar wiggler. In our study, we employ the electron beam parameters of Pohang Accelerator Laboratory (PAL)-XFEL. The RF phase effect of accelerator columns on the longitudinal energy distribution profile and current profile of electron-bunch is also studied, aiming that these results can be experimentally realized in PAL-XFEL. We show indeed that the manipulation of electron-energy bunch profile may lead to the generation of an isolated attosecond hard X-ray pulse: 150 attosecond radiation pulse at 0.1 nm wavelength can be generated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ackermann, W., et al. (2007). Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photon. 1, 336342.CrossRefGoogle Scholar
Andruszkow, J., et al. (2000). First observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength. Phys. Rev. Lett. 85, 38253829.CrossRefGoogle Scholar
Ayvazyan, V., et al. (2002). Generation of GW radiation pulses from a VUV free-electron laser operating in the femtosecond regime. Phys. Rev. Lett. 88, 104802/1–4.CrossRefGoogle ScholarPubMed
Ayvazyan, V., et al. (2006). First operation of a free-electron laser generating GW power radiation at 32 nm wavelength. Eur. Phys. J D 37, 297303.CrossRefGoogle Scholar
Baeva, T., Gordienko, S. & Pukhov, A. (2007). Relativistic plasma control for single attosecond pulse generation: Theory, simulations, and structure of the pulse. Laser Part. Beams 25, 339346CrossRefGoogle Scholar
Bonifacio, R., Pellegrini, C. & Narducci, L.M. (1984). Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 50, 373378.CrossRefGoogle Scholar
Borland, M. (2005). Elegant: A flexible SSD-compliant code for accelerator simulation. http://www.aps.anl.gov.Google Scholar
Brau, C.A. (1990). Free-Electron Lasers. New York: Academic Press Inc.Google Scholar
Brefelda, W., Faatza, B., Feldhausa, J., Orfera, M.K., Krzywinskib, J., Ollera, T.M., Pfluegera, J., Rossbacha, , Saldin, E.L., Schneidmillera, E.A., Schreibera, S. & Yurkovc, M.V. (2002). Development of a femtosecond soft X-ray SASE FEL at DESY. Nucl. Instrum. Meth. Phys. Res., Sect. A 483, 7579.CrossRefGoogle Scholar
Chung, S.Y., Yoon, M. & Kim, D.E. (2009).Generation of attosecond X-ray and gamma-ray via Compton backscattering. Opt. Exp. 17, 78537861.CrossRefGoogle ScholarPubMed
Karmakar, A. & Pukhov, A. (2007). Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses. Laser Part. Beams 25, 371377.CrossRefGoogle Scholar
Kim, D., Lee, H., Chung, S. & Leem, K. (2009). Attosecond keV X-ray pulses driven by Thomson scattering in a tight focus regime N. J. Phys. 11, 063050063062.CrossRefGoogle Scholar
Kumar, S., Kang, H.S. & Kim, D.E. (2011). Generation of isolated single attosecond hard X-ray pulse in enhanced self-amplified spontaneous emission scheme. Opt. Exp. 19, 75377545.CrossRefGoogle ScholarPubMed
Lee, K., Chung, S.Y., Park, S.H., Jeong, Y.U. & Kim, D. (2010). Effects of high-order fields of a tightly focused laser pulse on relativistic nonlinear Thomson scattered radiation by a relativistic electron. Euro. Phys. J 89, 64006.Google Scholar
Liu, L., Xia, C.Q., Liu, J.S., Wang, W.T., Cai, Y., Wang, C., Li, R.X. & Xu, Z.Z. (2010). Generation of attosecond X-ray pulses via Thomson scattering of counter-propagating laser pulses. Laser Part. Beams 28, 2734.CrossRefGoogle Scholar
Milton, S.V., et al. (2001). Exponential gain and saturation of a self-amplified spontaneous emission free-electron laser. Sci. 292, 20372041.CrossRefGoogle ScholarPubMed
Reiche, S. (1999). GENESIS 1.3: A fully 3D time-dependent FEL simulation code. Nucl. Instrum. Meth. Phys. Res. Sect. A 429, 243248.CrossRefGoogle Scholar
Roso, L., Plaja, L., Rzazewski, K. & Vonderlinde, D. (2001). Beyond the moving mirror model: Attosecond pulses from a relativistically moving plasma. Laser Part. Beams 18, 467475.CrossRefGoogle Scholar
Sakai, K., Miyazaki, S., Kawata, S., Hasumi, S. & Kikuchi, T. (2006). High-energy-density attosecond electron beam production by intense short-pulse laser with a plasma separator. Laser Part. Beams 24, 321327.CrossRefGoogle Scholar
Saldin, E.L., Schneidmiller, E.A. & Yurkov, M.V. (2004 a). Terawatt-scale sub-10-femtosecond laser technology–key to generation of GW-level attosecond pulses in X-ray free electron laser. Opt. Commun. 237, 153164.CrossRefGoogle Scholar
Saldin, E.L., Schneidmiller, E.A. & Yurkov, M.V. (2004 b). A new technique to generate 100 GW-level attosecond X-ray pulses from the X-ray SASE FELs. Opt. Commun. 239, 161172.CrossRefGoogle Scholar
Saldin, E.L., Schneidmiller, E.A. & Yurkov, M.V. (2006). Self-amplified spontaneous emission FEL with energy-chirped electron beam and its application for generation of attosecond X-ray pulses. Phys. Rev. Spec. Top. Accel Beams 9, 050702/1–6.CrossRefGoogle Scholar
Shintake, T., et al. (2008). A compact free-electron laser for generating coherent radiation in the extreme ultraviolet region. Nat. Photon. 2, 555559.CrossRefGoogle Scholar
Stupakov, G. (2009). Using the beam-echo effect for generation of short-wavelength radiation. Phys. Rev. Lett. 102, 074801/1–4.CrossRefGoogle ScholarPubMed
Varro, S. & Farkas, G. (2008). Attosecond electron pulses from interference of above-threshold debroglie waves. Laser Part. Beams 26, 919.CrossRefGoogle Scholar
Xiang, D., Huang, Z. & Stupakov, G. (2009). Generation of intense attosecond X-ray pulses ultraviolet laser induced microbunching in electron beams. Phys. Rev. Spec. Top. Accel Beams 12, 060701/1–7.CrossRefGoogle Scholar
Xiang, D. & Stupakov, G. (2009). Echo-enabled harmonic generation free electron laser. Phys. Rev. Spec. Top. Accel Beams 12, 030702/1–10.CrossRefGoogle Scholar
Zholents, A.A. (2005). Method of an enhanced self-amplified spontaneous emission for X-ray free electron lasers. Phys. Rev. Spec. Top. Accel Beams 8, 040701/1–6.Google Scholar
Zholents, A.A. & Fawley, W.M. (2004). Proposal for intense attosecond radiation from an X-ray free-electron laser. Phys. Rev. Lett. 92, 224801/1–4.CrossRefGoogle ScholarPubMed
Zholents, A.A. & Penn, G. (2005). Obtaining attosecond X-ray pulses using a self-amplified spontaneous emission free electron laser. Phys. Rev. Spec. Top. Accel Beams 8, 050704/1–7.Google Scholar
Zholents, A.A. & Zolotorev, M.S. (2008). Attosecond X-ray pulses produced by ultra-short transverse slicing via laser electron beam interaction. New J. Phys.10, 025005/1–12.CrossRefGoogle Scholar