Skip to main content Accessibility help
×
Home

Focusing of intense laser pulse by a hollow cone

  • Wei Yu (a1) (a2), Lihua Cao (a3) (a4), M.Y. Yu (a2) (a5), A.L. Lei (a1), Z.M. Sheng (a2) (a6), H.B. Cai (a3) (a7) (a4), K. Mima (a7) and X.T. He (a2) (a3) (a4)...

Abstract

It is shown that an intense laser pulse can be focused by a conical channel. This anomalous light focusing can be attributed to a hitherto ignored effect in nonlinear optics, namely that the boundary response depends on the light intensity: the inner cone surface is ionized and the laser pulse is in turn modified by the resulting boundary plasma. The interaction creates a new self-consistently evolving light-plasma boundary, which greatly reduces reflection and enhances forward propagation of the light pulse. The hollow cone can thus be used for attaining extremely high light intensities for applications in strong-field and high energy-density physics and other areas.

Copyright

Corresponding author

Address correspondence and reprint requests to: Lihua Cao, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China. E-mail: cao_lihua@iapcm.ac.cn

References

Hide All
Asthana, M.V., Giulietti, A., Giulietti, D., Gizzi, L.A. & Sodha, M.S. (2000). Relativistic interaction of rippled laser beams with plasmas. Laser Part. Beams 18, 399.
Beg, F.N., Bell, A.R., Dangor, A.E., Danson, C.N., Fews, A.P., Glinsky, M.E., Hammel, B.A., Lee, P., Norreys, P.A. & Tatarakis, M. (1997). A study of picosecond laser–solid interactions up to 1019 W/cm2. Phys. Plasmas 4, 447.
Borghesi, M., Kar, S., Romagnani, L., Toncian, T., Antici, P., Audebert, P., Brambrink, E., Ceccherini, F., Cecchetti, C.A., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Lyseikina, T., Jung, R., Macchi, A., Mora, P., Osterholtz, J., Schiavi, A. & Willi, O. (2007). Impulsive electric fields driven by high-intensity laser matter interactions, Laser Part. Beams 25, 161.
Cao, L., Yu, W., Yu, M.Y., Xu, H., He, X.T., Gu, Y., Liu, Z., Li, J. & Zheng, C. (2008). Nonlinear laser focusing using a conical guide and generation of energetic ions. Phys. Rev. E 78, 036405.
Chen, Z.L., Kodama, R., Nakatsutsumi, M., Nakamura, H., Tampo, M., Tanaka, K.A., Toyama, Y., Tsutsumi, T. & Yabuuchi, T. (2005). Enhancement of energetic electrons and protons by cone guiding of laser light. Phys. Rev. E 71, 036403.
Cowan, T.E., Fuchs, J., Ruhl, H., Kemp, A., Audebert, P., Roth, M., Stephens, R., Barton, I., Blazevic, A., Brambrink, E., Cobble, J., Fernández, J., Gauthier, J.-C., Geissel, M., Hegelich, M., Kaae, J., Karsch, S., Le Sage, G.P., Letzring, S., Manclossi, M., Meyroneinc, S., Newkirk, A., Pépin, H. & Renard-Legalloudec, N. (2004). Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204801.
Esarey, E., Schroeder, C.B. & Leemans, W.P. (2009). Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229.
Fritzler, S., Malka, V., Grillon, G., Rousseau, J.P., Burgy, F., Lefebvre, E., D'humièes, E., Mckenna, P. & Ledingham, K.W.D. (2003). Proton beams generated with high-intensity lasers: Applications to medical isotope production. Appl. Phys. Lett. 83, 30393041.
Key, M.H. (2007). Status of and prospects for the fast ignition inertial fusion concept, Phys. Plasmas 14, 055502.
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, T. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nat. (London) 412, 798802.
Lei, A.L., Tanaka, K.A., Kodama, R., Kumar, G.R., Nagai, K., Norimatsu, T., Yabuuchi, T. & Mima, K. (2006). Optimum hot electron production with low-density foams for laser fusion by fast ignition. Phys. Rev. Lett. 96, 255006.
Mason, R.J. (2006). Heating mechanisms in short-pulse laser-driven cone targets. Phys. Rev. Lett. 96, 035001.
Mori, W.B. (1997). The physics of the nonlinear optics of plasmas at relativistic intensities for short-pulse lasers. IEEE J. Quant. Electron. 33, 1942.
Mourou, G.A., Barty, C.P.J. & Perry, M.D. (1998). Ultrahigh intensity lasers: physics of the extreme on a tabtop. Phys. Today 51, 22.
Nagatomo, H., Johzaki, T., Nakamura, T., Sakagami, H., Sunahara, A. & Mima, K. (2007). Simulation and design study of cryogenic cone shell target for fast ignition realization experiment project. Phys. Plasmas 14, 056303.
Nakamura, T., Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2007). Optimization of cone target geometry for fast ignition. Phys. Plasmas 14, 103105.
Park, H.-S., Maddox, B.R., Giraldez, E., Hatchett, S.P., Hudson, L.T., Izumi, N., Key, M.H., Pape, S.L., Mackinnon, A.J., Macphee, A.G., Patel, P.K., Phillips, T.W., Remington, B.A., Seely, J.F., Tommasini, R., Town, R., Workman, J. & Brambrink, E. (2008). High-resolution 17–75 keV back-lighters for high energy density experiments . Phys. Plasmas 15, 072705.
Pasley, J. & Stephens, R. (2007). Simulations investigating the effect of a deuterium-tritium-ice coating on the motion of the gold cone surface in a re-entrant cone-guided fast ignition inertial confinement fusion capsule. Phys. Plasmas 14, 054501.
Perry, M.D. & Mourou, G. (1994). Terawatt to petawatt subpicosecond lasers. Sci. 264, 917924.
Perry, M.D., Pennington, D., Stuart, B.C., Tietbohl, G., Britten, J.A., Brown, C., Herman, S., Golick, B., Kartz, M., Miller, J., Powell, H.T., Vergino, M. & Yanovsky, V. (1999). Petawatt laser pulses. Opt. Lett. 24, 160162.
Rajeev, P.P., Taneja, P., Ayyub, P., Sandhu, A.S. & Kumar, G.R. (2003). Metal nanoplasmas as bright sources of hard X-ray pulses. Phys. Rev. Lett. 90, 115002.
Ruhl, H., Sentoku, Y., Mima, K., Tanaka, K.A. & Kodama, R. (1999). Collimated electron jets by intense laser-beam–plasma surface interaction under oblique incidence. Phys. Rev. Lett. 82, 743.
Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Fast ignition integrated interconnecting code project for cone-guided targets. Laser Particle Beams 24, 191198.
Sentoku, Y., Mima, K., Ruhl, H., Toyama, Y., Kodama, R. & Cowan, T.E. (2004). Laser light and hot electron micro focusing using a conical target. Phys. Plasmas 11, 3083.
Sodha, M.S., Mishra, S.K. & Misra, S. (2009). Focusing of dark hollow Gaussian electromagnetic beams in a plasma. Laser Part. Beams 27, 5768.
Stephens, R.B., Hatchett, S.P., Turner, R.E., Tanaka, K.A. & Kodama, R. (2003). Implosion of indirectly driven reentrant-cone shell target. Phys. Rev. Lett. 91, 185001.
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626.
Van Woerkom, L., Akli, K.U., Bartal, T., Beg, F.N., Chawla, S., Chen, C.D., Chowdhury, E., Freeman, R.R., Hey, D., Key, M.H., King, J.A., Link, A., Ma, T., Mackinnon, A.J., Macphee, A.G., Offermann, D., Ovchinnikov, V., Patel, P.K., Schumacher, D.W., Stephens, R.B. & Tsui, Y.Y. (2008). Fast electron generation in cones with ultraintense laser pulses. Phys. Plasmas 15, 056304.
Willi, O., Toncian, T., Borghesi, M., Fuchs, J., D'humieres, E., Antici, P., Audebert, P., Brambrink, E., Cecchetti, C., Pipahl, A. & Romagnani, L. (2007). Laser triggered micro-lens for focusing and energy selection of MeV protons, Laser Part. Beams 25, 71.
Xu, H., Chang, W.W., Zhuo, H.B., Cao, L.H. & Yue, Z.W. (2002). Parallel programming of 2(1/2)-dimensional PIC under distributed-memory parallel environments. Chin. J. Comput. Phys. 19, 305.
Yu, W., Cao, L., Yu, M.Y., Cai, H., Yang, X., Lei, A. & Kodama, R. (2009). Plasma channeling by multiple short-pulse lasers. Laser Part. Beams 27, 109114.

Keywords

Related content

Powered by UNSILO

Focusing of intense laser pulse by a hollow cone

  • Wei Yu (a1) (a2), Lihua Cao (a3) (a4), M.Y. Yu (a2) (a5), A.L. Lei (a1), Z.M. Sheng (a2) (a6), H.B. Cai (a3) (a7) (a4), K. Mima (a7) and X.T. He (a2) (a3) (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.