Skip to main content Accessibility help
×
Home

Features of 200 kV, 300 ns reflex triode vircator operation for different explosive emission cathodes

  • Amitava Roy (a1), R. Menon (a1), Vishnu Sharma (a1), Ankur Patel (a1), Archana Sharma (a1) and D.P. Chakravarthy (a1)...

Abstract

To study the effect of explosive field emission cathodes on high power microwave generation, experiments were conducted on a reflex triode virtual cathode oscillator. Experimental results with cathodes made of graphite, stainless steel nails, and carbon fiber (needle type) are presented. The experiments have been performed at the 1 kJ Marx generator (200 kV, 300 ns, and 9 kA). The experimentally obtained electron beam diode perveance has been compared with the one-dimensional Child-Langmuir law. The cathode plasma expansion velocity has been calculated from the perveance data. It was found that the carbon fiber cathode has the lowest cathode plasma expansion velocity of 1.7 cm/μs. The radiated high power microwave has maximum field strength and pulse duration for the graphite cathode. It was found that the reflex triode virtual cathode oscillator radiates a single microwave frequency with the multiple needle cathodes for a shorter (<200 ns full width at half maximum) voltage pulse duration.

Copyright

Corresponding author

Address correspondence and reprint requests to: Amitava Roy, Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India. E-mail: aroy@barc.gov.in

References

Hide All
Appelgren, P., Akyuz, M., Elfsberg, M., Hurtig, T., Larsson, A., Nyholm, S.E. & Möller, C. (2006). Study of a compact HPM system with a reflex triode and a marx generator. IEEE Trans. Plasma Sci. 34, 17961805.
Benford, J. (2008). Space Applications of High-Power Microwaves. IEEE Trans. Plasma Sci. 36, 569581.
Benford, J., Price, D., Sze, H. & Bromley, D. (1987). Interaction of a vircator microwave generator with an enclosing resonant cavity. J. Appl. Phys. 61, 20982100.
Benford, J., Swegle, J. & Schamiloglu, E. (2007). High Power Microwaves. Boca Raton: Taylor & Francis.
Biswas, D. & Kumar, R. (2007). Efficiency enhancement of the Axial VIRCATOR. IEEE Trans. Plasma Sci. 35, 369378.
Biswas, D. (2009). A one-dimensional basic oscillator model of the vircator. Phys. Plasmas 16, 063104.
Chen, Y., Mankowski, J., Walter, J., Kristiansen, M. & Gale, R. (2007). Cathode and anode optimization in a virtual cathode oscillator. IEEE Trans. Dielectr. Electr. Insulat. 14, 10371044.
Cohen, L. (1995). Time-Frequency Signal Analysis. New York: Prentice Hall.
Hegeler, F., Partridge, M.D., Schamiloglu, E. & Abdallah, C.T. (2000). Studies of relativistic backward-wave oscillator operation in the cross-excitation regime. IEEE Trans. Plasma Sci. 28, 567575.
Jiang, W. & Kristiansen, M. (2001). Theory of the virtual cathode oscillator. Phys. Plasmas 8, 37813787.
Jiang, W., Woolverton, K., Dickens, J. & Kristiansen, M. (1999). High power microwave generation by a coaxial virtual cathode oscillator. IEEE Trans. Plasma Sci. 27, 15381542.
Li, L., Liu, L., Cheng, G., Xu, Q., Wan, H., Chang, L. & Wen, J. (2009 a). The dependence of vircator oscillation mode on cathode material. J. Appl. Phys. 105, 123301.
Li, L., Liu, L., Wan, H., Zhang, J., Wen, J. & Liu, Y. (2009 b). Plasma-induced evolution behavior of space-charge-limited current for multiple-needle cathodes. Plasma Sources Sci. Technol. 18, 015011.
Li, L., Men, T., Liu, L. & Wen, J. (2007). Dynamics of virtual cathode oscillation analyzed by impedance changes in high-power diodes. J. Appl. Phys. 102, 123309.
Liu, L., Li, L.-M., Zhang, X.-P., Wen, L.-C., Wan, H. & Zhang, Y.-Z. (2007). Efficiency enhancement of reflex triode virtual cathode oscillator using the carbon fiber cathode. IEEE Trans. Plasma Sci. 35, 361368.
Mahaffey, R.A., Sprangle, P., Golden, J. & Kapetanakos, C.A. (1977). High-Power Microwaves from a Nonisochronic Reflecting Electron System. Phys. Rev. Lett. 39, 843846.
Maron, Y., Sarid, E., Zahavi, O., Perelmutter, L. & Sarfaty, M. (1989). Particle-velocity distribution and expansion of a surface-flashover plasma in the presence of magnetic fields. Phys. Rev. A 39, 58425855.
Menon, R., Roy, A., Singh, S.K., Mitra, S., Sharma, V., Kumar, S., Sharma, A., Nagesh, K.V., Mittal, K.C. & Chakravarthy, D.P. (2010). High power microwave generation from coaxial virtual cathode oscillator using graphite and velvet cathodes. J. Appl. Phys. 107, 093301.
Mesyats, G.A. (2004). Pulsed Power and Electronics. Moscow: Nauka.
Miller, R.B. (1982). An Introduction to the Intense Charged Particle Beam. New York: Plenum.
Parker, R.K., Anderson, E.R. & Duncan, C.V. (1974). Plasma-induced field emission and the characteristics of high-current relativistic electron flow. J. Appl. Phys. 45, 24632479.
Price, D. & Benford, J.N. (1998). General scaling of pulse shortening in explosive-emission-driven microwave sources. IEEE Trans. Plasma Sci. 26, 256262.
Pushkarev, A.I. & Sazonov, R.V. (2009). Research of cathode plasma speed in planar diode with explosive emission cathode. IEEE Trans. Plasma Sci. 37, 19011907.
Roy, A., Menon, R., Mitra, S., Kumar, S., Sharma, V., Nagesh, K.V., Mittal, K.C. & Chakravarthy, D.P. (2009). Plasma expansion and fast gap closure in a high power electron beam diode. Phys. Plasma 16, 053103.
Roy, A., Patel, A., Menon, R., Sharma, A., Chakravarthy, D.P. & Patil, D.S. (2011). Emission properties of explosive field emission cathodes. Phys. Plasmas 18, 103108.
Roy, A., Sharma, A., Mitra, S., Menon, R., Sharma, V., Nagesh, K.V. & Chakravarthy, D.P. (2011). Oscillation frequency of a reflex-triode virtual cathode oscillator. IEEE Trans. Electr. Devices 58, 553561.
Saveliev, Y.M., Sibbett, W. & Parkes, D.M. (2003). On anode effects in explosive emission diodes. J. Appl. Phys. 94, 57765781.
Sharma, A., Kumar, S., Mitra, S., Sharma, V., Patel, A., Roy, A., Menon, R., Nagesh, K.V. & Chakravarthy, D.P. (2011). Development and characterization of repetitive 1-kj marx-generator-driven reflex triode system for high-power microwave generation. IEEE Trans. Plasma Sci. 39, 12621267.
Shiffler, D., Cartwright, K.L., Lawrence, K., Ruebush, M., Lacour, M., Golby, K. & Zagar, D. (2003). Experimental and computational estimate of bipolar flow parameters in an explosive field emission cathode. Appl. Phys. Lett. 83, 428430.
Shiffler, D.A., Luginsland, J.W., Umstattd, R.J., Lacour, M., Golby, K., Haworth, M.D., Ruebush, M., Zagar, D., Gibbs, A. & Spencer, T.A. (2002). Effects of Anode Materials on the Performance of Explosive Field Emission Diodes. IEEE Trans. Plasma Sci. 30, 12321237.
Sullivan, D.J., Walsh, J.E. & Coutsias, E.A. (1987). “Virtual cathode oscillator (vircator) theory.” In High Power Microwave Sources (Granastein, V. & Alexeff, I. Norwood, Eds.). MA: Artech House, 441.
Thode, L.E. (1987). “Virtual cathode microwave device research: experiment and simulation.” In High Power Microwave Sources (Granastein, V. & Alexeff, I. Norwood, Eds.). MA: Artech House, 508.
Umstattd, R.J. & Luginsland, J.W. (2001). Two-Dimensional Space-Charge-Limited Emission: Beam-Edge Characteristics And Applications. Phys. Rev. Lett. 87, 145002.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed