Skip to main content Accessibility help
×
Home

Fast electron transport patterns in intense laser-irradiated solids diagnosed by modeling measured multi-MeV proton beams

  • David A. MacLellan (a1), David C. Carroll (a1), Ross J. Gray (a1), Nicola Booth (a2), Bruno Gonzalez-Izquierdo (a1), Haydn W. Powell (a1), Graeme G. Scott (a1) (a2), David Neely (a2) and Paul McKenna (a1)...

Abstract

The measured spatial-intensity distribution of the beam of protons accelerated from the rear side of a solid target irradiated by an intense (>1019 Wcm−2) laser pulse provides a diagnostic of the two-dimensional fast electron density profile at the target rear surface and thus the fast electron beam transport pattern within the target. An analytical model is developed, accounting for rear-surface fast electron sheath dynamics, ionization and projection of the resulting beam of protons. The sensitivity of the spatial-intensity distribution of the proton beam to the fast electron density distribution is investigated. An annular fast electron beam transport pattern with filamentary structure is inferred for the case of a thick diamond target irradiated at a peak laser intensity of 6 × 1019 Wcm−2.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Fast electron transport patterns in intense laser-irradiated solids diagnosed by modeling measured multi-MeV proton beams
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Fast electron transport patterns in intense laser-irradiated solids diagnosed by modeling measured multi-MeV proton beams
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Fast electron transport patterns in intense laser-irradiated solids diagnosed by modeling measured multi-MeV proton beams
      Available formats
      ×

Copyright

This is an Open Access article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-No Derivs licence . The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

Address Correspondence and reprint requests to: Paul McKenna, Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom. E-mail: paul.mckenna@strath.ac.uk

References

Hide All
Antici, P. (2007). Laser-acceleration of high-energy short proton beams and applications. PhD Thesis. Ecole Polytechnique
Borghesi, M., Fuchs, J., Bulanov, S.V., Mackinnon, A.J., Patel, P.K. & Roth, M. (2006). Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Technol. 49, 412439.
Bell, A.R. & Kingham, R.J. (2003). Resistive collimation of electron beams in laser-produced plasmas. Phys. Rev. Lett. 91, 035003.
Brambrink, E., Schreiber, J., Schlegel, T., Audebbert, P., Cobble, J., Fuchs, J., Hegelich, M. & Roth, M. (2006). Transverse characteristics of short-pulse laser-produced ion beams: A study of the acceleration dynamics. Phys. Rev. Lett 96, 154801.
Clark, E.L., Krushelnick, K., Zepf, M., Beg, F.N., Tatarakis, M., Machacek, A., Santala, M.I.K., Watts, I., Norreys, P.A. & Dangor, A.E. (2000). Energetic heavy-ion and proton generation from ultraintense laser-plasma interactions with solids. Phys. Rev. Lett. 85, 16541657.
Coury, M., Carroll, D.C., Robinson, A.P.L., Yuan, X.H., Brenner, C.M., Burza, M., Gray, R.J., Lancaster, K.L., Li, Y.T., Lin, X.X., MacLellan, D.A., Powell, H., Quinn, M.N., Tresca, O., Wahlstrom, C.-G., Neely, D. & McKenna, P. (2013). Injection and transport properties of fast electrons in ultraintense laser-solid interactions. Phys. Plasmas 20, 043104.
Fuchs, J., Cowan, T., Audebert, P., Ruhl, H., Gremillet, L., Kemp, A., Allen, M., Blazevic, A., Gauthier, J.C., Geissel, M., Hegelich, B.M., Karsch, S., Parks, P., Roth, M., Sentoku, Y., Stephens, R. & Campbell, E.M. (2003). Spatial uniformity of laser-accelerated ultrahigh-current MeV electron propagation in metals and insulators. Phys. Rev. Lett. 91, 255002.
Gremillet, L., Bonnaud, G. & Amiranoff, F. (2002). Filamented transport of laser-generated relativistic electrons penetrating a solid target. Phys. Plasmas 9, 941948.
Hao, B., Z.-M. Sheng, Z.-M. C., Ren, C. & Zhang, J. (2009). Relativistic collisional current filamentation instability and two-stream instability in dense plasma. Phys. Rev. E 79, 046409.
Maksimchuk, A., Gu, S., Flippo, K., Bychenkov, V.Y. & Umstadter, D., (2000). Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84, 41084111.
McKenna, P., Robinson, A.P.L., Neely, D., Desjarlais, M.P., Carroll, D.C., Quinn, M.N., Yuan, X.H., Brenner, C.M., Burza, M., Coury, M., Gallegos, P., Gray, R.J., Lancaster, K.L., Li, Y.T., Lin, X.X., Tresca, O. & Wahlstrom, C.-G. (2011). Effect of lattice structure on energetic electron transport in solids irradiated by ultraintense laser pulses. Phys. Rev. Lett, 106, 185004.
McKenna, P., Carroll, D.C., Clarke, R.J., Evans, R.G., Ledingham, K.W.D., Lindau, F., Lundh, O., McCanny, T., Neely, D., Robinson, A.P.L., Robson, L., Simpson, P.T., Wahlstrom, C.-G. & Zepf, M. (2007). Lateral electron transport in high-intensitylaser-irradiated foils diagnosed by ion emission. Phys. Rev. Lett., 98, 145001.
Quinn, M.N., Carroll, D.C., Yuan, X.H., Borghesi, M., Clarke, R.J., Evans, R.G., Fuchs, J., Gallegos, P., Lancia, L., Quinn, K., Robinson, A.P.L., Romagnani, L., Sarri, G., Spindloe, C,. Wilson, P.A., Neely, D. & McKenna, P. (2011). On the investigation of fast electron beam filamentation in laser-irradiated solid targets using multi-MeV proton emission. Plasma Phys. Contr. Fusion, 53, 124012.
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, C., Singh, M.S., Wilks, S.C., Mackinnon, A.J., Offenberger, A.A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.
Weibel, E.S. (1959). Spontaneously growing transverse waves in a plasma due to an an-isotropic velocity distribution. Phys. Rev. Lett. 2, 8384.
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., Mackinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultraintense laser-solid interactions. Phys. Plasmas 8, 542549.
Yuan, X.H., Robinson, A.P.L., Quinn, M.N., Carroll, D.C., Borghesi, M., Clarke, R.J., Evans, R.G., Fuchs, J., Gallegos, P., Lancia, L., Neely, D., Quinn, K., Romagnani, L., Sarri, G., Wilson, P.A. & McKenna, P. (2010). Effect of self-generated magnetic fields on fast-electron beam divergence in solid targets. New J. Phys. 12, 063018.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed