Skip to main content Accessibility help
×
Home

Fast electron beam with manageable spotsize from laser interaction with the tailored cone-nanolayer target

  • Huan Wang (a1) (a2), Lihua Cao (a1) (a2) (a3), Zongqing Zhao (a4), M.Y. Yu (a5) (a6), Yuqiu Gu (a4) and X.T. He (a1) (a2) (a3) (a5)...

Abstract

An advanced cone-nanolayer target with nanolayers on both inside and outside of the hollow-cone tip is proposed. Two-dimensional particle-in-cell simulations show that laser interaction with such cone-nanolayer targets can efficiently produce fast electron beams with manageable spotsize, and the beams can propagate for a relatively long distance in the vacuum beyond the cone tip.

Copyright

Corresponding author

Address correspondence and reprint requests to: Lihua Cao, Institute of Applied Physics and Computational Mathematics, Beijing, China, 100088. E-mail: cao_lihua@iapcm.ac.cn

References

Hide All
Borghesi, M., Campbell, D.H., Schiavi, A., Willi, O., Mackinnon, A.J., Hicks, D., Patel, P., Gizzi, L.A., Galimberti, M. & Clarke, R.J. (2002). Laser-produced protons and their application as a particle probe. Laser Part. Beams 20, 269275.
Cao, L., Gu, Y., Zhao, Z., Cao, L., Huang, W., Zhou, W., He, X.T., Yu, W. & Yu, M.Y. (2010a). Enhanced absorption of intense short-pulse laser light by subwavelength nanolayered target. Phys. Plasmas 17, 043103.
Cao, L., Gu, Y., Zhao, Z., Cao, L., Huang, W., Zhou, W., Cai, H., He, X.T., Yu, W. & Yu, M.Y. (2010b). Control of the hot electrons produced by laser interaction with nanolayered target. Phys. Plasmas 17, 103106.
Cao, L., Chen, M., Zhao, Z., Cai, H., Wu, S., Gu, Y., Yu, W., Yu, M.Y., & He, X.T. (2011). Efficient laser absorption and enhanced electron yield in the laser-target interaction by using a cone-nanolayer target. Phys. Plasmas 18, 054501.
Cai, H.B., Mima, K., Zhou, W.M., Jozaki, T., Nagatomo, H., Sunahara, A. & Mason, R.J. (2009). Enhancing the number of high-energy electrons deposited to a compressed pellet via double cones in fast ignition. Phys. Rev. Lett. 102, 245001.
Courtois, C., Edwards, R., Compant La Fontaine, A., Aedy, C., Barbotin, M., Bazzoli, S., Biddle, L., Brebion, D., Bourgade, J.L., Drew, D., Fox, M., Gardner, M., Gazave, J., Lagrange, J.M., Landoas, O., Ledain, L., Lefebvre, E., Mastrosimone, D., Pichoff, N., Pien, G., Ramsay, M., Simons, A., Sircombe, N., Stoeckl, C. & Thorp, K. (2011). High-resolution multi-MeV X-ray radiography using relativistic laser-solid interaction. Phys. Plasmas 18, 023101.
Eliezer, S. (2012). Relativistic acceleration of micro-foils with prospects for fast ignition. Laser Part. Beams 12, 02630346.
Kahaly, S., Yadav, S.K., Wang, W.M., Sengupta, S., Sheng, Z.M., Das, A., Kaw, P.K. & Kumar, G.R. (2008). Near-complete absorption of intense ultrashort laser light by sub-λ gratings. Phys. Rev. Lett. 101, 145001.
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, Y. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature (London) 412, 798.
Kodama, R., Sentoku, Y., Chen, Z.L., Kumar, G.R., Hatchett, S.P., Toyama, Y., Cowan, T.E., Freeman, R.R., Fuchs, J., Izawa, Y., Key, M.H., Kitagawa, Y., Kondo, K., Matsuoka, T., Nakamura, H., Nakatsutsumi, M., Norreys, P.A., Norimatsu, T., Snavely, R.A., Stephens, R.B., Tampo, M., Tanaka, K.A. & Yabuuchi, T. (2004). Plasma devices to guide and collimate a high density of MeV electrons. Nature (London) 432, 1005.
Kulcsár, G., Al Mawlawi, D., Budnik, F.W., Herman, P.R., Moskovits, M., Zhao, L., & Marjoribanks, R.S. (2000). Intense picosecond X-ray pulses from laser plasmas by use of nanostructured “velvet” targets. Phys. Rev. Lett. 84, 5149.
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002.
Murnane, M.M., Kapteyn, H.C., Gordon, S.P., Bokor, J., Glytsis, E.N. & Falcone, R.W. (1993). Efficient coupling of high intensity subpicosecond laser pulses into solids. Appl. Phys. Lett. 62, 1068.
Nakamura, T., Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Generation and transport of fast electrons inside cone targets irradiated by intense laser pulses. Laser Part. Beams 24, 58.
Nakamura, T., Sakagami, H., Hohzaki, T., Johzaki, T., Nagatomo, H., Mima, K. & Koga, J. (2007). Optimization of cone target geometry for fast ignition. Phys. Plasmas 14, 103105.
Nishikawa, T., Nakano, H., Ahn, H., Uesugi, N. & Serikama, T. (1997). X-ray generation enhancement from a laser-produced plasma with a porous silicon target. Appl. Phys. Lett. 70, 1653.
Ovchinnikov, A.V., Kostenko, O.F., Chefonov, O.V., Rosmej, O.N., Andreev, N.E., Agranat, M.B., Duan, J.L., Liu, J. & Fortov, V.E. (2011). Characteristic X-rays generation under the action of femtosecond laser pulses on nano-structured targets. Laser Part. Beams 29, 249254.
Quinn, M.N., Yuan, X.H., Lin, X.X., Carroll, D.C., Tresca, O., Gray, R.J., Coury, M., Li, C., Li, Y.T., Brenner, C.M., Robinson, A.P.L., Neely, D., Zielbauer, B., Aurand, B., Fils, J., Kuehl, T. & McKenna, P. (2011). Refluxing of fast electrons in solid targets irradiated by intense, picoseconds laser pulses. Plasma Phys. Contr. Fusion 53, 025007.
Renard-Le Galloudec, N., D'Humieres, E., Cho, B.I., Osterholz, J., Sentoku, Y. & Ditmire, T. (2009). Guiding, focusing, and collimated transport of hot electrons in a canal in the extended tip of cone targets. Phys. Rev. Lett. 102, 205003.
Rousse, A., Rischel, C. & Gauthier, J.-C. (2001). Colloquium: Femtosecond X-ray crystallography. Rev. Mod. Phys. 73, 17.
Ruhl, H., Bonitz, M. & Semkat, D. (2006). Introduction to Computational Methods in Many Particle Body Physics. Paramus: Rinton Press.
Sentoku, Y., Mima, K., Ruhl, H., Toyama, Y., Kodama, R. & Cowan, T.E. (2004). Laser light and hot electron micro focusing using a conical target. Phys. Plasmas 11, 3083.
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626.
Theobald, W., Akli, K., Clarke, R., Delettrez, J.A., Freeman, R.R., Glenzer, S., Green, J., Gregori, G., Heathcote, R., Izumi, N., King, J.A., Koch, J.A., Kuba, J., Lancaster, K., Mackinnon, A.J., Key, M., Mileham, C., Myatt, J., Neely, D., Norreys, P.A., Park, H.-S., Pasley, J., Patel, P., Regan, S.P., Sawada, H., Shepherd, R., Snavely, R., Stephens, R.B., Stoeckl, C., Storm, M., Zhang, B. & Sangster, T.C. (2006). Hot surface ionic line emission and cold K-inner shell emission from petawatt-laser-irradiated Cu foil targets. Phys. Plasmas 13, 043102.
Teubner, U. & Gibbon, P. (2009). High-order harmonics from laser-irradiated plasma surfaces. Rev. Mod. Phys. 81, 445.
Zhao, Z., Cao, L., Cao, L., Wang, J., Huang, W., Jiang, W., He, Y., Wu, Y., Zhu, B., Dong, K., Ding, Y., Zhang, B., Gu, Y., Yu, M. Y. & He, X.T. (2010a). Acceleration and guiding of fast electrons by a nanobrush target. Phys. Plasmas 17, 123108.
Zhou, C.T., Wu, S.Z., Cai, H.B., Chen, M., Cao, L.H., Chew, L.Y. & He, X.T. (2010b). Hot electron transport and heating in dense plasma core by hollow guiding. Laser Part. Beams 28, 563570.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed