Skip to main content Accessibility help
×
Home

Excitation of wakefield in a rectangular waveguide: Comparative study with different microwave pulses

  • A.K. Aria (a1), H.K. Malik (a1) and K.P. Singh (a2)

Abstract

A differential equation governing the wakefield potential (φ) in a plasma filled rectangular waveguide is derived analytically. This equation is solved numerically for the wakefield (Ew) generated with the help of three kinds of microwave pulses, namely sine pulse (SP), rectangular Gaussian pulse (RGP), and rectangular triangular pulse (RTP). The effect of microwave frequency (f), pulse duration (τ), waveguide width (b), equilibrium plasma density (n0), and microwave intensity (I) on the amplitude of the wakefield is studied. This amplitude is increased for the longer pulse duration and higher microwave intensity, but is decreased with growing waveguide width for all types of pulses. With regard to the variation of wakefield amplitude with plasma density, the RTP and SP behave in a similar fashion and the RGP behaves oppositely. The amplitude for the case of RGP gets increased with the plasma density. The amplitude is enhanced at larger microwave frequency for the cases of RGP and SP, but is decreased for the case of RTP. The comparative study of three types of pulses shows that the wakefield with larger amplitude is achieved with the help of rectangular triangular pulse, which is found to be sensitive with waveguide width, pulse duration and microwave intensity.

Copyright

Corresponding author

Address correspondence and reprint requests to: H.K. Malik, Plasma Waves and Particle Acceleration Laboratory, Department of Physics, Indian Institute of Technology, Delhi 110016, India. E-mail: hkmalik@physics.iitd.ac.in

References

Hide All
Andreev, N.E., Chegotov, M.V. & Veisman, M.E. (2000). Wakefield generation by elliptically polarized femtosecond laser pulse in ionizing gases. IEEE Trans. Plasma Sci. 28, 10981105.
Aria, A.K. & Malik, H.K. (2008). Wakefield generation in a plasma filled rectangular waveguide. Open Plasma Phys. J. 1, 18.
Baiwen, L.I., Ishiguro, S., Skoric, M.M., Takamaru, H. & Sato, T. (2004). Acceleration of high-quality, well-collimated return beam of relativistic electrons by intense laser pulse in a low-density plasma. Laser Part. Beams 22, 307314.
Balakirev, V.A., Karas, V.I., Karas, I.V. & Levchenko, V.D. (2001). Plasma wakefield excitation by relativistic electron bunches and charged particle acceleration in the presence of external magnetic field. Laser Part. Beams 19, 597604.
Chen, Z.L., Unick, C., Vafaei-Najafabadi, N., Tsui, Y.Y., Fedosejevs, R., Naseri, N., Masson-Laborde, P.E. & Rozmus, W. (2008). Quasi-monoenergetic electron beams generated from 7 TW laser pulses in N2 and He gas targets. Laser Part. Beams 26, 147155.
Cros, B., Courtois, C., Malka, G., Matthieussent, G., Marques, J.R., Dorchies, F., Amiranoff, F., Rebibo, S., Hamoniaux, G., Blanchot, N. & Miquel, J.L. (2000). Extending plasma accelerators: Guiding with capillary tubes. IEEE Trans. Plasma Sci. 28, 10711077.
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.
Gorbunov, L.M., Mora, P. & Ramazashvili, R.R. (2003 a). Laser surface wakefield in a plasma column. Phys. Plasmas 10, 45634566.
Gorbunov, L.M., Mora, P. & Solodov, A.A. (2003 b). Dynamics of a plasma channel created by the wakefield of a laser pulse. Phys. Plasmas 10, 11241134.
Jing, C., Liu, W., Xiao, L., Gai, W. & Schoessow, P. (2003). Dipole-mode wakefields in dielectric-loaded rectangular waveguide accelerating structures. Phys. Rev. E. 6, 016502 (16).
Kado, M., Daido, H., Fukumi, A., Li, Z., Orimo, S., Hayashi, Y., Nishiuchi, M., Sagisaka, A., Ogura, K., Mori, M., Nakamura, S., Noda, A., Iwashita, Y., Shirai, T., Tongu, H., Takeuchi, T., Yamazaki, A., Itoh, H., Souda, H., Nemoto, K., Oishi, Y., Nayuki, T., Kiriyama, H., Kanazawa, S., Aoyama, M., Akahane, Y., Inoue, N., Tsuji, K., Nakai, Y., Yamamoto, Y., Kotaki, H., Kondo, S., Bulanov, S., Esirkepov, T., Utsumi, T., Nagashima, A., Kimura, T. & Yamakawa, K. (2006). Observation of strongly collimated proton beam from Tantalum targets irradiated with circular polarized laser pulses. Laser Part. Beams 24, 117123.
Karmakar, A. & Pukhov, A. (2007). Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses. Laser Part. Beams 25, 371377.
Kingham, R.J. & Bell, A.R. (1997). Enhanced wakefields for the 1D Laser wakefield Accelerator. Phys. Rev. Lett. 79, 48104813.
Koyama, K., Adachi, M., Miura, E., Kato, S., Masuda, S., Watanabe, T., Ogata, A. & Tanimoto, M. (2006). Monoenergetic electron beam generation from a laser-plasma accelerator. Laser Part. Beams 24, 95100.
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.
Lotov, K.V. (2001). Laser wakefield acceleration in narrow plasma-filled channels. Laser Part. Beams 19, 219222.
Malik, H.K. (2008). Analytical calculations of wake field generated by microwave pulses in a plasma filled waveguide for electron acceleration. J. Appl. Phys. 104, 053308(1–7).
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.
Nishida, Y. & Sato, N. (1987). Observation of high-energy electrons accelerated by electrostatic waves propagating obliquely to a magnetic field. Phys. Rev. Lett. 59, 653656.
Nishida, Y. & Shinozaki, T. (1990). Resonant wave-particle interaction in v p x B acceleration scheme. Phys. Rev. Lett. 65, 23862389.
Nishida, Y., Kusaka, S. & Yugami, N. (1994). Excitation of wakefield and electron acceleration by short microwave pulse. Phys. Scripta T52, 6568.
Nishida, Y., Okazaki, T., Yugami, N. & Nagasawa, T. (1991). Excitation of large-amplitude ion-wave wake fields. Phys. Rev Lett. 66, 23282332.
Nishida, Y., Yoshizumi, M. & Sugihara, R. (1985). Electron acceleration by electromagnetic waves in weakly magnetized inhomogeneous plasma. Phys. Fluids 28,15741576.
Park, S.Y. & Hirshfield, J.L. (1997). Theory of wakefields in a dielectric-lined waveguide. Phys. Rev. E 62, p. 12661283.
Reitsma, A.J.W. & Jaroszynski, D.A. (2004). Coupling of longitudinal and transverse motion of accelerated electrons in laser wakefield acceleration. Laser Part. Beams 22, 407413.
Sprangle, P., Hafizi, B., Peñano, J.R., Hubbard, R.F., Ting, A., Moore, C.I., Gordon, D.F., Zigler, A., Kaganovich, D. & Antonsen, T.M. Jr. (2001). Wakefield generation and GeV acceleration in tapered plasma channels. Phys. Rev. 63, 056405(111).
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.
Xu, J.J., Kong, Q., Chen, Z., Wang, P.X., Wang, W., Lin, D. & Ho, Y.K. (2007). Polarization effect of fields on vacuum laser acceleration. Laser Part. Beams 25, 253257.
Yoder, R.B., Marshall, T.C. & Hirshfield, J.L. (2001). Energy-gain measurements from a microwave inverse free-electron-laser accelerator. Phys. Rev. Lett. 86, 17651768.
Zhang, T.B., Hirshfield, J.L., Marshall, T.C. & Hafizi, B. (1997). Stimulated dielectric wake-field accelerator. Phys. Rev. E 56, 46474655.
Zhou, C.T., Yu, M.Y. & He, X.T. (2007). Electron acceleration by high current-density relativistic electron bunch in plasmas. Laser Part. Beams 25, 313319.

Keywords

Excitation of wakefield in a rectangular waveguide: Comparative study with different microwave pulses

  • A.K. Aria (a1), H.K. Malik (a1) and K.P. Singh (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed