Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T06:30:52.241Z Has data issue: false hasContentIssue false

Excitation of ion Bernstein and ion cyclotron waves by a gyrating ion beam in a plasma column

Published online by Cambridge University Press:  13 December 2011

Asheel Kumar*
Affiliation:
Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
V.K. Tripathi
Affiliation:
Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
*
Address correspondence and reprint requests to: Asheel Kumar, Department of Physics, University of Allahabad, Allahabad-211002, India. E-mail: asheel2002@yahoo.co.in

Abstract

Gyrating ion beams, produced by quick ionization of neutral beams, employed for plasma heating, are susceptible to ion Bernstein and ion cyclotron instabilities. The Bernstein wave, having large parallel phase velocity, is excited via cyclotron interaction whereas the ion cyclotron wave with lower parallel phase velocity could be driven by Cerenkov interaction as well. The maximally growing modes have transverse wave number of the order of inverse ion Larmor radius. The nonlocal effects cause reduction in the growth rate.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bonoli, P.T., Ò Shea, P., Brambilla, M., Golovato, S.N., Hubbard, A.E., Porkolab, M., Takase, Y., Boivin, R.L., Bombarda, F., Christensen, C., Fiore, C.L., Garnier, D., Goetz, J., Granetz, R., Greenwald, M., Horne, S.F., Hutchinson, I.H., Irby, J., Jablonski, D., Labombard, B., Lipschultz, B., Marmar, E., May, M., Mazurenko, A., Mccracken, G., Nachtrieb, R., Niemczewki, A., Ohkawa, H., Pappas, D.A., Reardon, J., Rice, J., Rost, C., Schachter, J., Snipes, J.A., Stek, P., Takase, K., Terry, J., Wang, Y., Watterson, R.L., Welch, B. & Wolfe, S.M. (1997). Electron heating via mode converted ion Bernstein waves in the Alcator C-mod tokamak. Phys. Plasmas 4, 1774.CrossRefGoogle Scholar
Brambilla, M. (1999). Numerical simulation of ion cyclotron waves in tokamak plasmas. Plasma Phys. Contrl. Fusion 41, 1.Google Scholar
Brizard, A.J. & Kaufman, N.A. (1996). Linear-conversion theory of energetic minority-ion Bernstein-wave propagation across gyroresonance in nonuniform magnetic field. Phys. Plasmas 3, 64.CrossRefGoogle Scholar
Cardinali, A. (1993). Ion Bernstein wave propagation and absorption in general magnetic field configuration. Phys. Fluids B 5, 2778.Google Scholar
Cardinali, A., Castaldo, C., Cesario, R. & De Marco, F. (1998). Quasilinear damping of ion Bernstein waves on the harmonic resonant layer. Phys. Plasmas 5, 2871.Google Scholar
Cesario, R., Cardinali, A., Castaldo, C., Leigheb, M., Marinucci, M., Pericoli-Ridolfini, V., Zonca, F., Apruzzese, G., Borra, M., De Angelis, R., Giovannozzi, E., Gabellieri, L., Kroegler, H., Mazziteli, G., Micozzi, P., Panaccione, L., Papitto, P., Podda, S., Ravera, G., Angelini, B., Apicella, M.L., Barbato, E., Bertalot, L., Bertocchi, A., Buceti, G., Cascino, S., Centioli, C., Chuilon, P., Ciattaglia, S., Cocilovo, V., Crisanti, F., De Marco, F., Esposito, B., Gatti, G., Gormezano, , Grolli, M., Lannone, F., Maddaluno, G., Monari, G., Orsitto, P., Pacella, D., Panella, M., Pieroni, L., Righetti, G.B., Romanelli, F., Sternini, E., Tartoni, N., Trevisanutto, P., Tuccillo, A.A., Tudisco, O., Vitale, V., Vlad, G. & Zerbini, M. (2001). Reduction of the electron thermal conductivity produced by ion Bernstein waves on the Frascati tokamak upgrade tokamak. Phys. Plasmas 8, 4721.Google Scholar
Chen, K.R. (2000). Theories of relativistic ion cyclotron instabilities. Phys. Plasmas 7, 844.Google Scholar
Chibisov, D.V., Mikhailenko, V.S. & Stepanov, K.N. (2009). Oxygen-ion-beam-driven electrostatic ion cyclotron instability of hydrogen plasma. Phys. Plasmas 16, 072902.CrossRefGoogle Scholar
Clark, D.S. & Fisch, N.J. (2000). The possibility of high amplitude driven contained modes during ion Bernstein wave experiments in the tokamak fusion test reactor. Phys. Plasmas 7, 2923.CrossRefGoogle Scholar
Itoh, S. I., Itoh, K. & Fukuyama, A. (1984). Beam-driven ICRF instability and associated nonclassical transport in tokamak. Plasma Phys. Contr. Fusion 26, 1311.CrossRefGoogle Scholar
Jain, V.K. & Tripathi, V.K. (1987). Nonlocal theory of beam-driven electron Bernstein waves. Phys. Fluids 30, 909.Google Scholar
Kumar, A.Sharma, R.P. (1989). Some parametric instabilities which arise during ion-Bernstein wave heating in fusion plasmas. Phys. Fluids B 1, 2397.Google Scholar
Kumar, A.& Tripathi, V.K. (2004). Excitation of electron Bernstein waves by a gyrating relativistic electron beam in a plasma column. Phys. Plasmas 11, 538.CrossRefGoogle Scholar
Kuo, S.P., Huang, J. & Lee, M.C. (1998). Parametric excitation of ion Bernstein waves by parallel-propagating Langmuir waves in a collisional magnetoplasma. J. Atmosph.. Solar-Terr. Phys. 60, 121.CrossRefGoogle Scholar
Li, J., Bao, Y., Zhao, Y.P., Luo, J.R., Wan, B.N., Gao, X., Xie, J.K., Wan, Y.X. & Toi, K. (2001). Observation of parametric decay instability during ion Bernstein wave heating experiments on HT-7. Plasma Phys. Contr. Fusion 43, 1227.CrossRefGoogle Scholar
Li, J., Wan, B.N., Luo, J.R., Kuang, G.L., Zhao, J.Y., Zhang, X.D., Liu, X.N., Fu, P., Xie, J.K., Zhang, C., Gu, X.M., Mao, J.S., Shan, J.F., Bai, H.Y.Gentle, K., Rowan, B., Philippe, P., Huang, H., Lao, L., Chan, V., Watari, T., Seki, T. & Nakamura, N. (2003). Long pulse enhanced confinement discharges in the HT-7 superconducting tokamak by ion Bernstein wave heating and lower hybrid wave current drive. Phys. Plasmas 10, 1653.CrossRefGoogle Scholar
Lonnroth, J.S., Heikkinen, J.A., Rantamaki, K.M., & Karttunen, S.J. (2002). Particle-in-cell simulation of ion Bernstein wave excitation. Phys. Plasmas 9, 2926.CrossRefGoogle Scholar
Mikhailenko, V.S., Mikhailenko, V.V. & Stepanov, K.N. (2008). Ion cyclotron instabilities of parallel shear flow of collisional plasma. Phys. Plasmas 15, 092901.CrossRefGoogle Scholar
Myra, J.R. & D'Lppolito, D.A. (1997). Nonlinear density expulsion and electron heating in the nonadiabatic regime, and application to ion Bernstein wave heating. Phys. Plasmas 4, 3187.CrossRefGoogle Scholar
Ono, M. (1993). Ion Bernstein wave heating research. Phys. Plasmas 5, 241.Google Scholar
Ono, M., Beiersdorfer, P., Bell, R., Bernabei, S., Cavallo, A., Chmyga, A., Cohen, S., Colestock, P., Gammel, G., Greene, G.J., Hosea, J., Kaita, R., Lehrman, I., Mazziteli Mazzucato, E., Mcneill, D., Sato, K., Stevens, J., Timberlake, J., Wilson, J.R. & Wouters, A. (1988). Effects of high-power ion Bernstein waves on a tokamak plasma. Phys. Rev. Lett. 60, 294.CrossRefGoogle ScholarPubMed
Paoletti, F., Cardinali, A., Bernabei, S., Post-Zwicker, A., Tighe, W. & Von Goeler, S. (1999). Experimental and theoretical investigation of local synergy between ion Bernstein and lower hybrid waves in the Princeton Beta experiment-modified. Phys. Plasmas 6, 863.Google Scholar
Porkolab, M. (1985). Nonlinear Landau heating by ion-Bernstein waves in magnetically confined fusion plasmas. Phys. Rev. Lett. 54, 434.CrossRefGoogle ScholarPubMed
Saha, S.K., Raychaudhuri, S. & Sengupta, S.N. (1988). Excitation of pure ion Bernstein waves by the interaction of an energetic ion beam with the beam-created plasma. Plasma Phys. Contr. Fusion 30, 893.CrossRefGoogle Scholar
Sharma, A. & Tripathi, V.K. (1988). Excitation of kinetic Alfven waves in the ion-Bernstein wave heating of a plasma. Phys. Fluids 31, 3697.CrossRefGoogle Scholar
Sharma, R.P., Kumar, A., Kumar, R. & Tripathi, Y.K. (1994). Excitation of electron Bernstein and ion Bernstein waves by extraordinary electromagnetic pump: Kinetic theory. Phys. Plasmas 1, 522.CrossRefGoogle Scholar
Sperling, J.L. & Perkins, F.W. (1976). Ion-cyclotron waves in nonuniform plasmas and parametric instabilities. Phys. Fluids 19, 281.CrossRefGoogle Scholar
Stix, T.H. (1962). The Theory of Plasma Waves. New York: McGraw-Hill Book Company.Google Scholar
Sugaya, R. (1987). Ion heating by nonlinear Landau damping of ion Bernstein waves. Phys. Fluids 30, 1730.CrossRefGoogle Scholar
Svidzinski, V.A. & Swanson, D.G. (2000). Plasma heating in stellarators at the fundamental ion cyclotron frequency. Phys. Plasmas 7, 609.CrossRefGoogle Scholar
Tripathi, V.K., Liu, C.S. & Chiu, S.C. (1987). Kinetic theory of stabilization of the interchange mode by ion Bernstein waves. Nucl. Fusion 27, 287.Google Scholar
Utsunomiya, S., Iwamoto, S., Kondo, T., Sugawa, M., Maehara, T. & Sugaya, R. (2001). Unstable ion cyclotron harmonic waves generated by inhomogeneity and the ion beam in an ion-beam-plasma system. J. Plasma Phys. 66, 27.Google Scholar
Zhao, Y.P., Li, J., Luo, J.R., Wan, B.N., Mao, Y.Z., Bao, Y., Lin, B.L., Gong, X.Z., Gao, X., Yang, X.K., Jie, Y.X., Liu, S., Liu, S.X., Xie, J.K. & Wan, Y.X. (2001). Electron heating by ion Bernstein wave in the HT-7 tokamak. Plasma Phys. Contr. Fusion 43, 343.CrossRefGoogle Scholar