Skip to main content Accessibility help

Enhancement of extreme ultraviolet emission from laser irradiated targets by surface nanostructures

  • E. F. Barte (a1) (a2), R. Lokasani (a1) (a2), J. Proska (a1), L. Maresova (a1), D. Kos (a1) (a2), O. Maguire (a2), G. Joseph (a2), J. Sheil (a2), F. O'Reilly (a2), T. McCormack (a2), E. Sokell (a2), G. O'Sullivan (a2), J. Limpouch (a1) and P. Dunne (a2)...


The effects of shape and thickness of a tin surface layer and of the energy of a 170 ps neodymium:yttrium-aluminum-garnet laser pulse on the conversion efficiency (CE) into extreme ultraviolet emission in the 13.5 nm region is investigated. Whereas a CE of up to 1.16% into the 2% reflection band of multilayer Mo/Si optics was measured for a bulk Sn target at a laser energy of 25 mJ, significant CE enhancement up to 1.49% is demonstrated for a 200-nm-thick Sn layer on a microstructured porous alumina substrate.


Corresponding author

Address correspondence and reprint requests to: Ellie Floyd Barte and Prof. Jiří Limpouch, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, V Holesovickach 2, 180 00 Praha 8, Czech Republic. E-mail:


Hide All
Bauche, J., Bauche-arnoult, C. & Klapisch, M. (1988) Unresolved transition arrays. Phys. Scr. 37, 659663.
Chakravarty, U., Arora, V., Chakera, J.A., Naik, P.A., Srivastava, H., Tiwari, P., Srivastava, A. & Gupta, P.D. (2011). X-ray enhancement in a nanohole target irradiated by intense ultrashort laser. J. Appl. Phys. 109, 053301.
Churilov, S.S. & Ryabtsev, A.N. (2006 a). Analyses of the SnIX-Sn XII spectra in the EUV region. Phys. Scr. 73, 614619.
Churilov, S.S. & Ryabtsev, A.N. (2006 b). Analysis of the spectra of In XII-XIV and Sn XIII-XV in the far-VUV region. Opt. Spectrosc. 101, 169178.
D'Arcy, R., Ohashi, H., Suda, S., Tanuma, H., Fujioka, S., Nishimura, H., Nishihara, K., Suzuki, C., Kato, T., Koike, F., O'Connor, A. & O'Sullivan, G. (2009). Identification of 4d–5p transitions in the spectra of Sn XV–Sn XIX recorded from collisions between Sn ions and He. J. Phys. B: At. Mol. Opt. Phys. 42, 165207.
Dunne, P., O'Sullivan, G. & Ivanov, V.K. (1993). Extreme-ultraviolet absorption-spectrum of Ga+. Phys. Rev. A 48, 43584364.
Fomenkov, I.V., Brandt, D.C., Farrar, N.R., La Fontaine, B., Myers, D.W., Brown, D.J., Ershov, A. I., Bowering, N.R., Riggs, D.J., Rafac, R.J., De Dea, S., Purvis, M., Peeters, R., Meiling, H., Harned, N., Smith, D., Kazinczi, R. & Pirati, A. (2014). Laser produced plasma light source development for HVM. Proc. SPIE 9048, 904835.
Ge, L.Q., Bai, L.L., Fei, T., Wang, W.C., Nagai, K., Nishimura, H., Izawa, Y., Mima, K. & Norimatsu, (2011). Effect of Nd:YAG laser energy on multilayer hollow nanofiber target's extreme ultraviolet conversion efficiency. J. Macromol. Sci. B-Phys. 50, 17611770.
Ge, L.Q., Nagai, K., Gu, Z.Z., Shimada, Y., Nishimura, H., Miyanaga, N., Izawa, Y., Mima, K. & Norimatsu, T. (2008). Dry tin dioxide hollow microshells and extreme ultraviolet radiation induced by CO2 laser illumination. Langmiur 24, 1040210406.
Hayden, P. (2007). Extreme ultraviolet source development using laser plasmas containing tin. PhD Thesis. University College Dublin, Ireland.
Hayden, P., Cummings, A., Murphy, N., O'Sullivan, G., Sheridan, P., White, J. & Dunne, P. (2006). 13.5 nm extreme ultraviolet emission from tin based laser produced plasma sources. Appl. Phys. Lett. 99, 093302.
Lokasani, R., Arai, G., Kondo, Y., Hara, H., Dinh, T. H., Ejima, T., Hatano, T., Jiang, W., Makimura, T., Li, B., Dunne, P., O'Sullivan, G., Higashiguchi, T. & Limpouch, J. (2016). Soft X-ray emission from molybdenum plasmas generated by dual laser pulses. Appl. Phys. Lett. 109, 194103.
Lokasani, R., Long, E., Maguire, O., Sheridan, P., Hayden, P., O'Reilly, F., Dunne, P., Sokell, E., Endo, A., Limpouch, J. & O'Sullivan, G. (2015). XUV spectra of 2nd transition row elements: identification of 3d-4p and 3d–4f transition arrays. J. Phys. B: At. Mol. Opt. Phys. 48, 245009.
Mahdieh, N.H., Fazeli, R. & Tallents, G.J. (2009). Soft x-ray enhancement from a porous nano-layer on metal targets irradiated by long laser pulses. J. Phys. B: At. Mol. Opt. Phys. 42, 125602.
Mocek, T., Jakubczak, K., Kozlova, M., Polan, J., Homer, P., Hrebicek, J., Sawicka, M., Kim, I.J., Park, S.B., Kim, C.M., Lee, G.H., Kim, T.K., Nam, C.H., Chalupsky, J., Hajkova, V., Juha, L., Sobota, J., Fort, T. & Rus, B. (2010). Ablative microstructuring with plasma-based XUV lasers and efficient processing of materials by dual action of XUV/NIR-VIS ultrashort pulses. Radiat. Eff. Defects Solids 165, 551558.
Nagai, K., Gu, Q., Norimatsu, T., Fujioka, S., Nishimura, H., Miyanaga, N., Nishihara, K., Izawa, Y. & Mima, K. (2006) Laser Part. Beams 26, 497500.
Nishikawa, T., Nakano, H., Ahn, H. & Uesugi, N. (2004b). Nanohole-array size dependence of soft x-ray generation enhancement from femtosecond-laser-produced plasma. J. Appl. Phys. 96, 75377543.
Nishikawa, T., Nakano, H., Ahn, H., Uesugi, N. & Serikawa, T. (1997). X-ray generation enhancement from a laser-produced plasma. Appl. Phys. Lett. 70, 16531655.
Nishikawa, T., Nakano, H., Oguri, K., Uesugi, N., Nakao, M., Nishio, K. & Masuda, H. (2001). Nanocylinder-array structure greatly increases the soft X-ray intensity generated from femtosecond-laser-produced plasma. Appl. Phys. B 73, 185188.
Nishikawa, T., Suzuki, S., Watanabe, Y., Zhou, O. & Nakano, H. (2004a). Efficient water-window X-ray pulse generation from femtosecond-laser-produced plasma by using a carbon nanotube target. Appl. Phys. B 78, 885890.
Okuno, T., Fujioka, S., Nishimura, H., Tao, Y., Nagai, K., Gu, Q., Ueda, N., Ando, T., Nishihara, K., Norimatsu, T., Miyanaga, N., Izawa, Y., Mima, K., Sunahara, A., Furukawa, H. & Sasaki, A. (2006). Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas. Appl. Phys. Lett. 88, 161501.
Sugar, J., Kaufman, V. & Rowan, W.L. (1992). Rb-like spectra – Pd-X to Nd-XXIV. J. Opt. Soc. Am. B 9, 19591961.
Suzuki, C., Kato, T., Sakaue, H.A., Kato, D., Sato, K., Tamura, N., Sudo, S., Yamamoto, N., Tanuma, H., Ohashi, H., D'Arcy, R. & O'Sullivan, G. (2010) Analysis of EUV spectra of Sn XIX–XXII observed in low-density plasmas in the large helical device. J. Phys. B: At. Mol. Opt. Phys. 43, 074027.
Wachulak, P., Torrisi, A., Nawaz, M.F., Bartnik, A., Adjei, D., Vondrova, S., Turnová, J., Jancarek, A., Limpouch, J., Vrbova, M. & Fiedorowicz, H. (2015). A compact “water window” microscope with 60 nm spatial resolution for applications in biology and nanotechnology. Microsc. Microanal. 21, 12141223.
Wu, B. & Kumar, A. (2014). Extreme ultraviolet lithography and three dimensional integrated circuit-A review. Appl. Phys. Rev. 1, 011104.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed