Skip to main content Accessibility help
×
Home

Enhanced Raman scattering of a rippled laser beam in a magnetized collisional plasma

  • NARESHPAL SINGH SAINI (a1) and TARSEM SINGH GILL (a1)

Abstract

In the laser–plasma interaction experiments, self-focusing and filamentation affect quite a large number of other parametric processes including stimulated scattering processes. Nonlinearity considered in the present problem is the collisional type. The coupling between the main beam, ripple, and excited electron plasma wave is strong. Authors have investigated the growing interaction of a rippled laser beam with an electron plasma wave leading to enhanced Raman scattering. An expression for scattered power is derived and the effect of the externally applied magnetic field on the enhancement of scattered power is observed. From computational results, it is observed that the effect of increased intensity of the main beam leads to suppression of power associated with the Raman scattered wave.

Copyright

Corresponding author

Address correspondence and reprint requests to: Nareshpal Singh Saini, Department of Physics, Guru Nanak Dev University, Amritsar–143005, India. E-mail: nssaini@yahoo.com

References

Hide All

REFERENCES

Akhmanov, S.A., Sukhorbikov, A.P. & Khokhlov, R.V. (1968). Sov. Phys. Usp. 10, 609.
Amin, M.R., Capjack, C.E., Frycz, P., Rozmus, W. & Tikhonchuk, V.T. (1993). Two-dimensional studies of stimulated Brillouin scattering, filamentation, and self-focusing instabilities of laser light in plasmas. Phys. Fluids 5, 37483764.
Fuchs, J., Labaune, C., Depierreux, S., Tikhonchuk, V.T. & Baldis, H.A. (2000). Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. I. Experiment Phys. Plasmas 7, 46594668.
Liu, C.S. & Tripathi, V.K. (1995). Thermal effects on coupled self-focusing and Raman scattering of a laser in a self-consistent plasma channel. Phys. Plasmas 2, 31113114.
Russell, D.A., DuBois, D.F. & Rose, H.A. (1999). Nonlinear saturation of stimulated Raman scattering in laser hot spots. Phys. Plasmas 6, 12941317.
Saini, N.S. & Gill, T.S. (2002). Advances in contemporary physics & energy (supplement)New Delhi, India: Allied Publishers Pvt. Ltd., 111127.
Short, R. W. & Simon, A. (1998). Collisionless damping of localized plasma waves in laser-produced plasmas and application to stimulated Raman scattering in filaments. Phys. Plasmas 5, 41344143.
Singh, A. & Singh, T. (1990). The effect of a static magnetic field on the growth of a rippled electromagnetic beam. J. Plasma Phys. 43, 465474.
Singh, N. & Singh, T. (1999). Growth of laser ripple in a collisional magnetoplasma and its effect on plasma wave excitation. J. Plasma Fusion Res. 2, 423426
Singh, T. (1981). Excitation of waves and scattering phenomena in Plasmas, PhD Thesis, Indian Institute of Technology Delhi: New Delhi, India.
Singh, T. & Salimullah, M. (1987). Nonlinear Interaction of a Gaussian EM Beam with an Electrostatic Upper Hybrid Wave: Stimulated Raman Scattering. IL Nuovo Cimento 9, 987998.
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Progress in Optics 13, 169.
Sodha, M.S., Singh, T., Singh, D.P. & Sharma, R.P. (1981). Growth of laser ripple in a plasma and its effect on plasma wave excitation. Phys. Fluids 24, 914919.
Sodha, M.S., Tewari, D.P. & Subbarao, D. (1983). Contemporary Plasma Physics. Delhi, India: Macmillan India Ltd.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed