Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T05:14:12.840Z Has data issue: false hasContentIssue false

Enhanced energy loss of heavy ions passing a fully ionized hydrogen plasma

Published online by Cambridge University Press:  09 March 2009

R. Kowalewicz
Affiliation:
Department of Physics, University Erlangen-Nüremberg, Germany
E. Boggasch
Affiliation:
Department of Physics, University Erlangen-Nüremberg, Germany
D.H.H. Hoffmann
Affiliation:
Department of Physics, University Erlangen-Nüremberg, Germany
J. Jacoby
Affiliation:
Department of Physics, University Erlangen-Nüremberg, Germany
W. Laux
Affiliation:
Gesellschaft für Schwerionenforschung, Darmstadt, Germany
C. Stöckl
Affiliation:
Gesellschaft für Schwerionenforschung, Darmstadt, Germany
K. Weyrich
Affiliation:
Gesellschaft für Schwerionenforschung, Darmstadt, Germany
S. Miyamoto
Affiliation:
lnstitute of Laser Engineering, Osaka, Japan

Abstract

Experiments are presented that demonstrate the high stopping power of fully ionized hydrogen plasma for low-energy heavy ions. A plasma with electron densities up to 7.1016 cm–3 at temperatures above 1 eV was created by an electrical discharge. In the described experiment, a stopping power of 1.08 GeV/(mg/cm2) was measured using singly charged krypton ions at 45–keV/u energy. The measured stopping power exceeds the corresponding value in cold hydrogen gas by a factor of 35. These measurements confirm the theoretical stopping power predictions close to the expected maximum in a fully ionized plasma.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bock, R. et al. 1984 Nucl. Sci. Appl. 2, 97.Google Scholar
Boggasch, E. et al. 1991 Phys. Rev. Lett. 66, 1705.CrossRefGoogle Scholar
Deutsch, C. 1986 Ann. Phys. (Paris) 11, 1.Google Scholar
Griem, H. 1964 Plasma Spectroscopy. (McGraw-Hill, New York).Google Scholar
Keefe, D. 1982 Annu. Rev Nucl. Part. Sci. 32, 391.CrossRefGoogle Scholar
Jacoby, J. et al. 1990 Phys. Rev. Lett. 65, 2007.CrossRefGoogle Scholar
Jacoby, J. et al. 1995 Phys. Rev. Lett. 74, 1550.CrossRefGoogle Scholar
Nardi, E. 1982 Phys. Rev. Lett. 49, 1251.CrossRefGoogle Scholar
Nardi, E. & Zinamon, Z. 1978 Phys. Fluids 21, 574.CrossRefGoogle Scholar
Mehlhorn, T.A. 1981 J. Appl. Phys. 52, 6522.CrossRefGoogle Scholar
Peter, T. & Meyer-Ter-Vehn, J. 1991a, Phys. Rev. A 43, 1998.CrossRefGoogle Scholar
Peter, T. & Meyer-Ter-Vehn, J. 1991b, Phys. Rev. A 43, 2015.CrossRefGoogle Scholar
Peter, T. et al. 1986, Phys. Rev. Lett. 57, 1859.CrossRefGoogle Scholar