Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T11:40:28.638Z Has data issue: false hasContentIssue false

Energy exchange between the lattice and electrons in a metal under femtosecond laser irradiation

Published online by Cambridge University Press:  30 August 2005

YU.V. PETROV
Affiliation:
L.D. Landau Institute for Theoretical Physics, Chernogolovka, Russia

Abstract

The energy transfer rate between the lattice and electrons in strongly nonequilibrium electron-phonon system of crystalline aluminum created by ultrashort femtosecond laser pulse is calculated in the frame of two-temperature model for a wide range of electron temperature. It is shown that the energy, transmitted from electrons to the lattice per unit volume of the crystal per unut time strongly increases when taking into account the umklapp processes in the electron-phonon scattering.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, P.B. (1987). Theory of thermal relaxation of electrons in metals. Phys. Rev. Lett. 59, 14601462.CrossRefGoogle Scholar
Alouani Bibi, F., Matte, J.-P. & Kieffer, J.-C. (2004a). Fokker-Planck simulations of hot electron transport in solid density plasma. Laser Part. Beams 22, 97102.Google Scholar
Alouani Bibi, F. & Matte, J.-P. (2004b). Nonlocal electron heat transport and election-ion energy transfer in the presence of strong collisional heating. Laser Part. Beams 22, 103108.Google Scholar
Anisimov, S.I., Kapeliovich, B.L. & Perel'man, T.L. (1974). Electron emission from metal surfaces exposed to ultrashort laser pulses. Zh. Eksp. Teor. Fix. 66, 776781; Sov. Phys. JETP 39, 375377.Google Scholar
Anisimov, S.I., Benderskii, V.A. & Farkas, Gy. (1977). Non-linear photoelectric effect in metals produced by a laser radiation. Usp. Fiz. Nauk. 122, 185222; Sov. Phys.-Uspekhi 20, 467488.Google Scholar
Ashitkov, S.I., Agranat, M.B., Kondratenko, P.S., Anisimov, S.I., Fortov, V.E., Temnov, V.V., Sokolovski-Tinten, K., Rethfeld, B., Zhou, P. & von der Linde, D. (2002). Ultrafast laser-induced phase transitions in tellurium. Pis'ma v ZhETF 76, 538541.CrossRefGoogle Scholar
Fal'kovskii, L.A. & Mishchenko, E.G. (1997). Lattice deformation from interaction with electrons heated by an untrashort laser pulse. Pis'ma v ZhETF 66, 195199; JETP Lett. 66, 208213.Google Scholar
Girifalco, L.A. (1973). Statistical Physics of Materials. New York: John Wiley & Sons.
Kaganov, M.I., Lifshits, I.M. & Tanatarov, L.V. (1957). Relaxation between electrons and a lattice. Zh. Eksp. Teor. Fiz. 31, 232237; Sov. Phys. JETP 4, 173178.Google Scholar
Landau, L.D. & Lifshits, E.M. (1980). Statistical Physics. Oxford: Pergamon.
Lugovskoy, A.V. & Bray, I. (1999). Ultrafast electron dynamics in metals under laser irradiation. Phys. Rev. B 60, 32793288.CrossRefGoogle Scholar
Medvedev, D.M. & Petrov, Yu.V. (1999). Dependence of the phonon spectrum of a metal on electron temperature in a nonequilibrium electron-phonon system. Zh. Eksp. Teor. Fiz. 115, 231242; JETP 88, 128134.Google Scholar
Rethfeld, B., Kaiser, A., Vicanek, M. & Simon, G. (2002). Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys. Rev. B 65, 214303 (111).Google Scholar
Schoenlein, R.W., Lin, W.Z., Fujimoto, J.G. & Eesley, G.L. (1992). Femtosecond studies of nonequilibrium electronic processes in metals. Phys. Rev. Lett. 58, 16801683.Google Scholar
Stampfli, P. & Bennemann, K.H. (1990). Theory for the instability of the diamond structure of Si, Ge and C induced by a dense electron-hole plasma. Phys. Rev. B 42, 71637173.CrossRefGoogle Scholar