Skip to main content Accessibility help
×
Home

Energy balance aspect in KALI-30 GW high-voltage pulse power source

  • Archana Sharma (a1), S. Mitra (a1), Senthil K. Vishnu Sharma (a1), Sandeep Singh (a1), S.V. Tewari (a1) and K.C. Mittal (a1)...

Abstract

This paper elaborates the effect of unmatched stored energy in high-voltage high-energy pulsed power systems. High-voltage insulation failure of KALI system is analyzed thoroughly for its occurrence. According to the simulations and analysis energy mismatch of MARX generator and Blumlein transmission line is found to be the most significant cause for high-voltage failure of the system. MARX generator and Blumlein of KALI are redesigned to attain better energy balance at same voltage level. Observations, simulation and analytical results are illustrated in the following sections.

Copyright

Corresponding author

Address correspondence and reprint requests to: Archana Sharma, Accelerator and Pulse Power Division, Bhabha Atomic Research Center, Trombay, Mumbai-400085, India. E-mail: as25566042@gmail.com

References

Hide All
Freund, H.P. & Antonsen, T.M. (1996). Principles of Free-Electron Lasers. New York: Springer-Verlag.
Gold, S.H. & Nusinovich, G.S. (1997). Review of high-power microwave source research. Rev. Sci. Instrum. 68, 39453974.
Kumar, D.D.P., Mitra, S., Senthil, K., Sharma, A., Nagesh, K.V., Singh, S.K., Mondal, J., Roy, A. & Chakravarthy, D.P. (2007). Characterization and analysis of a pulse power system based on Marx generator and Blumlein. Rev. Sci. Instrum. 78, 115107/1–4.
Liu, L., Li, L.-M., Zhang, X.-P., Wen, J.-C., Wan, H. & Zhang, Y.-Z. (2007). Efficiency enhancement of reflex triode virtual cathode oscillator using the carbon fiber cathode. IEEE Trans. Plasma Sci. 35, 361368.
Maenchen, J., Cooperstein, G., O'Malley, J. & Smith, I. (2004). Advances in pulsed power-driven radiography systems. Proc. IEEE 92, 10211042.
Mazarakis, M.G., Poukey, J.W., Maenchen, J.E., Rovang, D.C., Menge, P.R., Lash, J.S., Smith, D.L., Johnson, D.L., Halbleib, J.A., Cordova, S.R., Mikkelson, K., Gustwiller, J., Stygar, W.A., Welch, D.R., Smith, I. & Corcoran, P. (1997). Inductive voltage adder (IVA) for submillimeter radius electron beam. Proc. 11th IEEE Pulse Power Conf. 1, 642650.
Miller, R.B. (1982). An Introduction to the Physics of Intense Charge Particle Beams. New York: Plenum.
Mondal, J., Kumar, D.D.P., Roy, A., Mitra, S., Sharma, A., Singh, S.K, Rao, G.V., Mittal, K.C., Nagesh, K.V. & Chakravarthy, D.P. (2007). Intense gigawatt relativistic electron beam generation in the presence of prepulse. J. Appl. Phys. 101, 034905/1–4.
Roy, A., Menon, R., Mitra, S., Kumar, D.D.P., Kumar, S., Sharma, A., Mittal, K.C., Nagesh, K.V. & Chakravarthy, D.P. (2008 a). Intense relativistic electron beam generation and prepulse effect in high power cylindrical diode. J. Appl. Phys. 103, 014 905/1–6.
Roy, J., Mondal, R., Menon, S., Mitra, D.D.P., Kumar, A., Sharma, K.C., Mittal, K.V. Nagesh & Chakravarthy, D.P. (2007). Intense gigawatt relativistic electron beam generation in the presence of prepulse. Part II. J. Appl. Phys. 102, 064902/1–5.
Roy, R., Menon, S., Mitra, D.D.P., Kumar, S., Kumar, V.K., Sharma, A., Patel, A., Sharma, K.C., Mittal, K.C., Nagesh, K.V. & Chakravarthy, D.P. (2008 b). Effect of cathode diameter on intense relativistic electron beam generation in the presence of prepulse. J. Appl. Phys. 104, 1.
Schneider, L.X., Reed, K.W. & Kaye, R.J. (1997). Applications of Accelerators in Research and Industry (Duggan, J.L. & Morgan, I.L., Eds.). New York: AIP.
Smith, D. (2004). Induction voltage adders and the induction accelerator family. Phys. Rev. Spec. Top., Accel. Beams 7, 064801/1-41.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed