Skip to main content Accessibility help
×
Home

Electron-positron pair production observed from laser-induced processes in ultra-dense deuterium D(-1)

  • Frans Olofson (a1) and Leif Holmlid (a1)

Abstract

Laser-induced fusion in ultra-dense deuterium D(-1) is reported in several studies from our group, using ns- and ps-pulsed lasers. The ejection of ultra-dense hydrogen particles with thermal distributions and energy up to 20 MeV u−1 was studied previously by time-of-flight measurements. The investigations of the new processes continue now by studying the interaction of these particles with metal surfaces. In the present experiments, such particles penetrate in two steps through 1 mm of metal and reach three levels of collectors at distances up to 1 m. Only the fastest particles penetrate and move to the next level. The thermal time-of-flight distributions together with tests with strong magnetic fields exclude electrons as the particles observed. The sign of the signals to the metal collectors depends on the bias (negative bias gives positive signal and conversely) while the time variations of the signals for positive and negative bias are similar. The rapid variation of the signals indicates electrons and positrons ejected from the collectors, thus lepton-pair production. An increase in bias up to ± 400 V increases the peak signal up to 1 A with no observed limiting. A thick metal plate removes slow particles and most gamma photons. The number of lepton-pairs produced is > 4 × 1012 sr−1 in the forward direction per laser shot.

Copyright

Corresponding author

Address correspondence and reprint requests to: Leif Holmlid, Atmospheric Science, Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Göteborg, Sweden. E-mail: holmlid@chem.gu.se

References

Hide All
Andersson, P.U. & Holmlid, L. (2009). Ultra-dense deuterium: A possible nuclear fuel for inertial confinement fusion (ICF). Phys. Lett. A 373, 30673070.
Andersson, P.U. & Holmlid, L. (2010). Deuteron energy of 15 MK in a surface phase of ultra-dense deuterium without plasma formation: Temperature of the interior of the Sun. Phys. Lett. A 374, 28562860.
Andersson, P.U. & Holmlid, L. (2011). Superfluid ultra-dense deuterium D(-1) at room temperature. Phys. Lett. A 375, 13441347.
Andersson, P.U. & Holmlid, L. (2012 a). Cluster ions DN+ ejected from dense and ultra-dense deuterium by Coulomb explosions: Fragment rotation and D+ backscattering from ultra-dense clusters in the surface phase. Int. J. Mass Spectrom. 310, 3243.
Andersson, P.U. & Holmlid, L. (2012 b). Fusion generated fast particles by laser impact on ultra-dense deuterium: Rapid variation with laser intensity. J. Fusion Ener. 31, 249256.
Andersson, P.U. & Holmlid, L. (2012 c). Fast atoms and negative chain cluster fragments from laser-induced Coulomb explosions in a super-fluid film of ultra-dense deuterium D(-1). Phys. Scr. 86, 045601.
Andersson, P.U., Holmlid, L. & Fuelling, S.R. (2012). Search for superconductivity in ultra-dense deuterium D(-1) at room temperature: Depletion of D(-1) at field strength >0.05 T. J. Supercond. Novel Magn. 25, 873882.
Andersson, P.U., Lönn, B. & Holmlid, L. (2011). Efficient source for the production of ultra-dense deuterium D(-1) for laser induced fusion (ICF). Rev. Sci. Instrum. 82, 013503.
Badiei, S., Andersson, P.U. & Holmlid, L. (2009 a). Fusion reactions in high-density hydrogen: A fast route to small-scale fusion? Int. J. Hydr. Energy 34, 487495.
Badiei, S., Andersson, P.U. & Holmlid, L. (2009 b). High-energy Coulomb explosions in ultra-dense deuterium: Time-of-flight mass spectrometry with variable energy and flight length. Int. J. Mass Spectrom. 282, 7076.
Badiei, S., Andersson, P.U. & Holmlid, L. (2010 a). Laser-driven nuclear fusion D + D in ultra-dense deuterium: MeV particles formed without ignition. Laser Part. Beams 28, 313317.
Badiei, S., Andersson, P.U. & Holmlid, L. (2010 b). Laser-induced variable pulse-power TOF-MS and neutral time-of-flight studies of ultra-dense deuterium. Phys. Scripta 81, 045601.
Chen, H., Wilks, S.C., Bonlie, J.D., Liang, E.P., Myatt, J., Price, D. F., Meyerhofer, D.D. & Beiersdorfer, P. (2009). Relativistic positron creation using ultraintense short pulse lasers. Phys. Rev. Lett. 102, 105001.
Cowan, T.E., Perry, M.D., Key, M.H., Ditmire, T.R., Hatchett, S.P., Henry, E.A., Moody, J.D., Moran, M.J., Pennington, D.M., Phillips, T.W., Sangster, T.C., Sefcik, J.A., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C., Young, P.E., Takahashi, Y., Dong, B., Fountain, W., Parnell, T., Johnson, J., Hunt, A.W. & Kühl, T. (1999). High energy electrons, nuclear phenomena and heating in petawatt laser-solid experiments. Laser Part. Beams 17, 773783.
Dutton, J., Llewellyn Jones, F., Rees, W.D. & Williams, E.M. (1966). The motion of slow positive ions in gases. IV. Drift and diffusion of ions in hydrogen. Phil. Trans. Roc. Soc. London A 259 339354.
Holmlid, L. (2011). High-charge Coulomb explosions of clusters in ultra-dense deuterium D(-1). Int. J. Mass Spectrom. 304, 5156.
Holmlid, L. (2012 a). MeV particles from laser-initiated processes in ultra-dense deuterium D(-1). Eur. Phys. J. A 48, 11.
Holmlid, L. (2012 b). Experimental studies and observations of clusters of Rydberg matter and its extreme forms. J. Cluster Sci. 23, 534.
Holmlid, L. (2012 c). Deuterium clusters Dn and mixed K-D and D-H clusters of Rydberg Matter: High temperatures and strong coupling to ultra-dense deuterium. J. Cluster Sci. 23, 95114.
Holmlid, L. (2013 a). Laser-induced fusion in ultra-dense deuterium D(-1): Optimizing MeV particle ejection by carrier material selection. Nucl. Instr. Meth. B 296, 6671.
Holmlid, L. (2013 b). Direct observation of particles with energy >10 MeV/u from laser-induced processes with energy gain in ultra-dense deuterium. Laser Part. Beams 31, 715722.
Holmlid, L. (2013 c). Laser-mass spectrometry study of ultra-dense protium p(-1) with variable time-of-flight energy and flight length, Int. J. Mass Spectrom. 351, 6168.
Holmlid, L. (2013 d). Excitation levels in ultra-dense hydrogen p(-1) and d(-1) clusters: Structure of spin-based Rydberg matter. Int. J. Mass Spectrom. 352, 18.
Holmlid, L. (2013 e). Two-collector timing of 3-14 MeV/u particles from laser-induced processes in ultra-dense deuterium. Int. J. Modern Phys. E 22, 1350089.
Holmlid, L. (2014). Ultra-dense hydrogen H(-1) as the cause of instabilities in laser compression-based nuclear fusion. J. Fusion Energy 33, 348350. doi:10.1007/s10894-014-9681-x.
Holmlid, L., Hora, H., Miley, G. & Yang, X. (2009). Ultra-high-density deuterium of Rydberg matter clusters for inertial confinement fusion targets. Laser Part. Beams 27, 529532.
Hora, H., Osman, F., Castillo, R., Collins, M., Stait-Gardener, T., Chan, W.-K., Hölss, M., Scheid, W., Wang, J.-X. & Ho, Y.-K. (2002). Laser-generated pair production and Hawking-Unruh radiation. Laser Part. Beams 20, 7986.
Hora, H., Castillo, R., Stait-Gardner, T., Hoffmann, D.H.H., Miley, G.H. & Lalousis, P. (2011). Laser Acceleration up to Black Hole Values and B-Meson Decay. J. Proc. R. Soc. New South Wales (Australia) 144, 2733.
Hurricane, O.A., Callahan, D.A., Casey, D.T., Celliers, P.M., Cerjan, C., Dewald, E.L., Dittrich, T.R., Döppner, T., Hinkel, D.E., Hopkins, L.F.B., Kline, J.L., Le Pape, S., Ma, T., MacPhee, A.G., Milovich, J.L., Pak, A., Park, H.-S., Patel, P.K., Remington, B.A., Salmonson, J.D., Springer, P.T. & Tommasini, R. (2014). Fuel gain exceeding unity in an inertially confined fusion implosion. Nature 506, 343–9.
L'Annunziata, M.F. (2007). Radioactivity. Introduction and History. Amsterdam: Elsevier.
Lerche, R.A., Cable, M.D. & Dendooven, P.G. (1996). ICF burn-history measurements using 17-MeV fusion gamma rays. AIP Conf. Proc. 369, 527–32.
Lipson, A., Heuser, B.J., Castano, C., Miley, G., Lyakhov, B. & Mitin, A. (2005). Transport and magnetic anomalies below 70 K in a hydrogen-cycled Pd foil with a thermally grown oxide. Phys. Rev. B 72, 212507.
Mack, J.M., Berggren, R.R., Caldwell, S.E., Christensen, C.R., Evans, S.C., Faulkner, J.R. Jr., Griffith, R.L., Hale, G.M., King, R.S., Lash, D.K., Lerche, R.A., Oertel, J.A., Pacheco, D.M. & Young, C.S. (2006). Remarks on detecting high-energy deuterium-tritium fusion gamma rays using a gas Cherenkov detector. Radiat. Phys. Chem. 75, 551–6.
Meima, G.R. & Menon, P.G. (2001). Catalyst deactivation phenomena in styrene production. Appl. Catal. A 212, 239245.
Miley, G.H., Yang, X., Hora, H., Flippo, K., Gaillard, S., Offermann, D. & Cort Gautier, D. (2010). Advances in proposed D-Cluster inertial confinement fusion target. J. Phys.: Conf. Series 244, 032036.
Muhler, M., Schlögl, R. & Ertl, G. (1992). The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene. 2. Surface chemistry of the active phase. J. Catal. 138, 413444.
Myatt, J., Delettrez, J.A., Maximov, A.V., Meyerhofer, D.D., Short, R.W., Stoeckl, C. & Storm, M. (2009). Optimizing electron-positron pair production on kilojoule-class high-intensity lasers for the purpose of pair-plasma creation. Phys. Rev. E 79, 066409.
Olofson, F. & Holmlid, L. (2012 a). Detection of MeV particles from ultra-dense protium p(-1): laser-initiated self-compression from p(1). Nucl. Instr. Meth. B 278, 3441.
Olofson, F. & Holmlid, L. (2012 b). Superfluid ultra-dense deuterium D(-1) on polymer surfaces: structure and density changes at a polymer-metal boundary. J. Appl. Phys. 111, 123502.
Olofson, F., Ehn, A., Bood, J. & Holmlid, L. (2012). Large intensities of MeV particles and strong charge ejections from laserinduced fusion in ultra-dense deuterium. 39th EPS Conference & 16th Int. Congress on Plasma Physics; P1.105.
Winterberg, F. (2010 a). Ultradense deuterium. J. Fusion Energ. 29, 317321.
Winterberg, F. (2010 b). Ultra-dense deuterium and cold fusion claims. Phys. Lett. A 374, 27662771.
Yang, X., Miley, G.H., Flippo, K.A. & Hora, H. (2011). Energy enhancement for deuteron beam fast ignition of a precompressed inertial confinement fusion target. Phys. Plasmas 18, 032703.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed