Skip to main content Accessibility help
×
Home

Efficiency of ablative plasma energy transfer into a massive aluminum target using different atomic number ablators

  • A. Kasperczuk (a1), T. Pisarczyk (a1), T. Chodukowski (a1), Z. Kalinowska (a1), W. Stepniewski (a1), K. Jach (a2), R. Swierczynski (a2), O. Renner (a3), M. Smid (a3), J. Ullschmied (a3) (a4), J. Cikhardt (a5), D. Klir (a5), P. Kubes (a5), K. Rezac (a5), E. Krousky (a4), M. Pfeifer (a4) and J. Skala (a4)...

Abstract

This paper aims at investigation of efficiency of an ablative plasma energy transfer into a massive aluminum target using different atomic number ablators. For this reason, several target materials representing a wide range of atomic numbers (Z = 3.5–73) were used. The experiment was carried out at the iodine Prague Asterix Laser System. The laser provided a 250 ps pulse with energy of 130 J at the third harmonic frequency (λ3 = 0.438 μm). To study the plasma stream configurations a four-frame X-ray pinhole camera was used. The electron temperature of the plasma in the near-surface target region was measured by means of an X-ray spectroscopy. The efficiency of the plasma energy transport to the target was determined via the crater volume measurement using the crater replica technique. The experimental results were compared with two-dimensional numerical simulations where the plasma dynamics was based on the one-fluid, two temperature model, including radiation transport in diffusive approximation and ionization kinetics. It was shown that the plasma expansion geometry plays an important role in the ablative plasma energy transfer into the target.

Copyright

Corresponding author

Address correspondence and reprint requests to: T. Pisarczyk, Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland. E-mail: tadeusz.pisarczyk@ifpilm.pl

References

Hide All
Gus'kov, S.Yu. (2013). Fast ignition of inertial confinement fusion targets. ISSN 1063-780X, Plasma Phys. Rep. 39, 3.
Gus'kov, S.Yu., Demchenko, N.N., Kasperczuk, A., Pisarczyk, T., Kalinowska, Z., Chodukowski, T., Renner, O., Smid, M., Krousky, E., Pfeifer, M., Skala, J., Ullschmied, J. & Pisarczyk, P. (2014). Laser-driven ablation through fast electrons in PALS experiment at the laser radiation intensity of 1–50 PW/cm2. Laser Part. Beams 32, 177.
Gus'kov, S.Yu., Rozanov, V.B. & Rumyantseva, M.A. (1997). Equations of state for metals (Al, Fe, Cu, Pb), polyethylene, carbon, and boron nitride as applied to problems of dynamical compression. J. Russ. Laser Res. 18, 311. (in Russian).
Jach, K., Morka, A., Mroczkowski, M., Panowicz, R., Sarzyński, A., Stępniewski, W., Świerczyński, R. & Tyl, J. (2001) Computer Modelling of Dynamic Interaction of Bodies by Free Particle Method. PWN, Warsaw (in Polish).
Kasperczuk, A., Pisarczyk, T., Chodukowski, T., Kalinowska, Z., Gus'kov, S.Yu., Demchenko, N.N., Ullschmied, J., Krousky, E., Pfeifer, M., Rohlena, K., Skala, J., Klir, D., Kravarik, J., Kubes, P., Cikhardt, J., Rezac, K. & Pisarczyk, P. (2013). Plastic plasma interaction with plasmas with growing atomic number. Cent. Eur. J. Phys. 11, 575.
Kasperczuk, A., Pisarczyk, T., Chodukowski, T., Kalinowska, Z., Gus'kov, S.Yu., Demchenko, N.N., Ullschmied, J., Krousky, E., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2014). Interactions of plastic plasma with different atomic number plasmas. Phys. Scr. T 161, 014034.
Kasperczuk, A., Pisarczyk, T., Demchenko, N.N., Gus'kov, S.Yu., Kalal, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2009). Experimental and theoretical investigations of mechanisms responsible for plasma jets formation at PALS. Laser Part. Beams 27, 415.
Lindl, J. (1995). Development of the indirect drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Plasma Phys. 2, 3933.
MacFarlane, J.J., Golovkin, I.E., Wang, P., Woodruff, P.R. & Pereyra, N.A. (2007). A mlti-dimensional collisional radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output. High Energy Density Phys. 3, 181.
Marczak, J., Jach, K., Świerczyński, S. & Strzelec, M. (2010). Numerical modelling of laser matter interaction in the region of “low” laser parameters. Appl. Phys. A 100, 725.
Renner, O., Uschmann, I. & Förster, E. (2004). X-ray spectroscopy of hot dense plasmas. Laser Part. Beams 22, 25.
Ribeyre, X., Schurtz, G., Lafon, M., Galera, S. & Weber, S. (2009). Shock ignition: An alternative scheme for HiPER. Plasma Phys. Control. Fusion 51, 015013.
Šmíd, M., Antonelli, L. & Renner, O. (2013). X-ray spectroscopic characterization of shock-ignition-relevant plasmas. Acta Polytech. 53, 233.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed