Skip to main content Accessibility help

Effects of plasma and ultrashort laser pulse on residual electron energy in optical-field-ionized oxygen plasma

  • Esmaeil Eslami (a1) and Keyvan Basereh (a1)


In this paper the classical theory of Above Threshold Ionization (ATI) in the oxygen plasma was used to show how the residual electron energy depends on the laser parameters such as pulse length, wavelength and peak intensity. The value of ATI energy is found to increase with laser wavelength and its intensity. Our study conducted for three cases of τ > 2π/νp, τ = 2π/ωp, and τ < 2π/ωp, where ωp is the plasma frequency, reveals that the ATI energy is decreased for the pulse duration τ ≠ 2π/ωp. Also it is showed how the space charge effect can reduce the residual electron energy to a minimum value, in a suitable condition. By optimizing various parameters, we can generate the cold electrons suitable for the recombination x-ray laser.


Corresponding author

Address correspondence and reprint requests to: Esmaeil Eslami, Department of Physics, Iran University of Science & Technology, Narmak, Tehran, 16846-13114, Iran. E-mail:


Hide All
Ammosov, M.V., Delone, N.B. & Krainov, V.P. (1989). Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. J.Exper. Theor. Phys. 64, 4.
Augst, S., Strickland, D., Meyerhofer, D.D., Chin, S.L. & Eberly, J.H. (1989). Tunneling ionization of noble gases in a high-intensity laser field. Phys. Rev. Lett. 63, 22122215.
Bauer, D. (2003). Plasma formation through field ionization in intense laser-matter interaction. Laser Part. Beams 21, 489495.
Becker, W., Grasbon, F., Kopold, R., Milošević, D.B., Paulus, G.G. & Walther, H. (2002). Above-threshold ionization: From classical features to quantum effects. Advan. Atom., Molecul. Opt. Phys. B 48, 3598.
Burnett, N.H. & Corkum, P.B. (1989). Cold-plasma production for recombination extremeultraviolet lasers by optical-field-induced ionization. J. Opt. Soc. Am. B 6, 11951199.
Burnett, N.H. & Enright, G.D. (1990). Population inversion in the recombination of optically-ionized plasmas. Quan. Electr., IEEE J. 26, 17971808.
Busuladžić, M., Gazibegović-Busuladžić, A. & Milošević, D.B. (2009). Strong-field approximation for ionization of a diatomic molecule by a strong laser field. III. High-order above-threshold ionization by an elliptically polarized field. Phys. Rev. A 80, 013420.
Byrne, G.D. & Hindmarsh, A.C. (1987). Review of current and coming attractions. J Comput. Phys. 70, 162.
Chichkov, B.N., Egbert, A., Eichmann, H., Momma, C., Nolte, S. & Wellegehausen, B. (1995). Soft-X-ray lasing to the ground states in low-charged oxygen ions. Phys. Rev. A 52, 16291639.
Corkum, P.B. (1993). Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 19941997.
Corkum, P.B., Burnett, N.H. & Brunel, F. (1989). Above-threshold ionization in the long-wavelength limit. Phys. Rev. Lett. 62, 12591262.
Eder, D.C., Amendt, P. & Wilks, S.C. (1992). Optical-field-ionized plasma X-ray lasers. Phys. Rev. A 45, 67616772.
Freeman, R.R., Bucksbaum, P.H., Milchberg, H., Darack, S., Schumacher, D. & Geusic, M.E. (1987). Above-threshold ionization with subpicosecond laser pulses. Phys. Rev. Lett. 59, 10921095.
Grout, M.J., Janulewicz, K.A., Healy, S.B. & Pert, G.J. (1997). Optical-field induced gas mixture breakdown for recombination X-ray lasers. Opt. Commun. 141, 213220.
Hulin, S., Auguste, T., D'Oliveira, P., Monot, P., Jacquemot, S., Bonnet, L. & Lefebvre, E. (2000). Soft-X-ray laser scheme in a plasma created by optical-field-induced ionization of nitrogen. Phys. Rev. E 61, 56935700.
Ivanova, E.P. (2011). Highly efficient tabletop X-ray laser at λ = 41.8 nm in Pd-like xenon pumped by optical-field ionization in a cluster jet. Phys. Rev. A 84, 043829.
Javanainen, J., Eberly, J.H. & Su, Q. (1988). Numerical simulations of multiphoton ionization and above-threshold electron spectra. Phys. Rev. A 38, 34303446.
Keldysh, L.V. (1964). Ionization in the field of a strong electromagnetic wave. Zh Eksperim i Teor Fiz 47, 19451957.
Kuroda, H., Suzuki, M., Ganeev, R., Zhang, J., Baba, M., Ozaki, T. & Wei, Z.Y. (2005). Advanced 20 TW Ti: S laser system for X-ray laser and coherent XUV generation irradiated by ultra-high intensities. Laser Part. Beams 23, 396396.
Lemoff, B.E., Yin, G.Y., Gordon Iii, C.L., Barty, C.P.J. & Harris, S.E. (1995). Demonstration of a 10-Hz femtosecond-pulse-driven XUV laser at 41.8 nm in Xe IX. Phys. Rev. Lett. 74, 15741577.
Lin, J.Y. (2007). Optimization of laser propagation in optical-field-ionization plasmas for X-ray laser generation. Appl. Phys. B 86, 2529.
Matthews, D.L., Hagelstein, P.L., Rosen, M.D., Eckart, M.J., Ceglio, N.M., Hazi, A.U., Medecki, H., MacGowan, B.J., Trebes, J.E., Whitten, B.L., et al. (1985). Demonstration of a Soft X-Ray Amplifier. Phys. Rev. Lett. 54, 110113.
Mocek, T., Sebban, S., Bettaibi, I., Zeitoun, P., Faivre, G., Cros, B., Maynard, G., Butler, A., McKenna, C. & Spence, D. (2005). Progress in optical-field-ionization soft X-ray lasers at LOA. Laser Part. Beams 23, 351356.
Mohideen, U., Sher, M.H., Tom, H.W.K., Aumiller, G.D., Wood, O.R. II, Freeman, R.R., Boker, J. & Bucksbaum, P.H. (1993). High intensity above-threshold ionization of He. Phys. Rev. Lett. 71, 509512.
Morozov, A., Luo, Y., Suckewer, S., Gordon, D. & Sprangle, P. (2010). Propagation of ultrashort laser pulses in optically ionized gases. Phys. Plasmas 17, 023101.
Nagata, Y., Midorikawa, K., Kubodera, S., Obara, M., Tashiro, H. & Toyoda, K. (1993). Soft-X-ray amplification of the Lyman-α transition by optical-field-induced ionization. Phys. Rev. Lett. 71, 37743777.
Paulus, G.G., Becker, W., Nicklich, W. & Walther, H. (1994). Rescattering effects in above-threshold ionization: a classical model. J. Phys. B: Atom., Molecul. Opt. Phys. 27, L703.
Penetrante, B.M. & Bardsley, J.N. (1991). Residual energy in plasmas produced by intense subpicosecond lasers. Phys. Rev. A 43, 31003113.
Pulsifer, P., Apruzese, J.P., Davis, J. & Kepple, P. (1994). Residual energy and its effect on gain in a Lyman-α laser. Phys. Rev. A 49, 39583965.
Rae, S.C. & Burnett, K. (1992). Possible production of cold plasmas through optical-field-induced ionization. Phys. Rev. A 46, 20772083.
Ros, D., Jamelot, G., Carillon, A., Jaegle, P., Klisnick, A., Zeitoun, P., Rus, B., Joyeux, D., Phalippou, D. & Boussoukaya, M. (2002). State of the development of X-ray lasers and applications at LSAI. Laser Part. Beams 20, 2330.
Rosen, M.D., Hagelstein, P.L., Matthews, D.L., Campbell, E.M., Hazi, A.U., Whitten, B.L., MacGowan, B., Turner, R.E., Lee, R.W., Charatis, G., et al. (1985). Exploding-foil technique for achieving a soft X-ray laser. Phys. Rev. Lett. 54, 106109.
Sebban, S., Haroutunian, R., Balcou, P., Grillon, G., Rousse, A., Kazamias, S., Marin, T., Rousseau, J.P., Notebaert, L., Pittman, M., et al. (2001). Saturated Amplification of a Collisionally pumped optical-field-ionization soft X-ray laser at 41.8 nm. Phys. Rev. Lett. 86, 30043007.
Suckewer, S., Skinner, C.H., Milchberg, H., Keane, C. & Voorhees, D. (1985). Amplification of stimulated soft X-ray emission in a confined plasma column. Phys. Rev. Lett. 55, 17531756.
Wilks, S., Kruer, W., Williams, E., Amendt, P. & Eder, D. (1995). Stimulated Raman backscatter in ultraintense, short pulse laser–plasma interactions. Phys. Plasmas 2, 274.
Yamaguchi, N., Fujikawa, C., Okasaka, K. & Hara, T. (2002). Production of highly ionized plasma by micro-dot array irradiation and its application to compact X-ray lasers. Laser Part. Beams 20, 7377.


Effects of plasma and ultrashort laser pulse on residual electron energy in optical-field-ionized oxygen plasma

  • Esmaeil Eslami (a1) and Keyvan Basereh (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed