Skip to main content Accessibility help
×
Home

Effects of beam temperature and plasma frequency on the radiation growth rate of a FEL with a laser wiggler

  • N. Esmaeildoost (a1) and S. Jafari (a1)

Abstract

A linearly polarized laser pulse has been employed as a wiggler in a free-electron laser (FEL) in the presence of a plasma background for generating short wavelength radiation down to the extreme ultraviolet ray and X-ray spectral regions. Introducing plasma background in the FEL interaction region would lessen the beam energy requirement and also enhance both the beam current and the electron-bunching process. This configuration affords the possibility of scaling the device to more compact FELs and would have a higher tunability by changing the plasma density and the temperature of the electron beam. Electron trajectories have been analyzed using single-particle dynamics. The effect of plasma density on electron orbits has been investigated. A polynomial dispersion relation considering longitudinal thermal motion has been derived, by employing perturbation analysis. Numerical studies indicate that by increasing plasma density, the growth rate for groups I and II decreases, while the growth rate for group III increases. In addition, the effect of beam temperature and cyclotron frequency on the growth rate has been discussed. It has been found that by increasing the thermal velocity of the electron beam, the growth rate for groups I and III trivially decreases, while it increases for group II orbits. Besides, an increase in cyclotron frequency cause growth enhancement for group I orbits, while it present a growth decrement for group II and III orbits.

Copyright

Corresponding author

Address correspondence and reprint requests to: S. Jafari, Department of Physics, University of Guilan, 41335-1914 Rasht, Guilan, Iran. E-mail: SJafari@guilan.ac.ir

References

Hide All
Abedi, S., Dorranian, D., Etehadi-Abari, M. & Shokri, B. (2011). Relativistic effects in the interaction of high intensity ultra-short laser pulse with collisional underdense plasma. Phys. Plasmas 18, 093108-1093108-5.
Alesini, D., Bertolucci, S., Biagini, M.E., Boni, R., Boscolo, M., Castellano, M., Clozza, A., Di Pirro, G., Drago, A., Esposito, A., Ferrario, M., Fusco, V., Gallo, A., Ghigo, A., Guiducci, S., Incurvati, M., Ligi, C., Marcellini, F., Migliorati, M., Milardi, C., Mostacci, A., Palumbo, L., Pellegrino, L., Preger, M., Raimondi, P., Ricci, R., Sanelli, C., Serio, M., Sgamma, F., Spataro, B., Stecchi, A., Stella, A., Tazzioli, F., Vaccarezza, C., Vescovi, M., Vicario, C., Zobov, M., Alessandria, F., Bacci, A., Boscolo, I., Broggi, F., Cialdi, S., De Martinis, C., Giove, D., Maroli, C., Petrillo, V., Romè, M., Serafini, L., Musumeci, P., Mattioli, M., Catani, L., Chiadroni, E., Tazzari, S., Ciocci, F., Dattoli, G., Doria, A., Flora, F., Gallerano, G.P., Giannessi, L., Giovenale, E., Messina, G., Mezi, L., Ottaviani, P.L., Picardi, L., Quattromini, M., Renieri, A., Ronsivalle, C., Cianchi, A., Schaerf, C. & Rosenzweig, J.B. (2004). The SPARC/X SASE-FEL projects. Laser Part. Beams 22, 341350.
Allaria, E., Appio, R., Badano, L., Barletta, W.A., Bassanese, S., Biedron, S.G., Borga, A. & Busetto, E. (2012). Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photonics 6, 699704.
Amann, J., Berg, W., Blank, V., Decker, F.-J., Ding, Y., Emma, P., Feng, Y., Frisch, J., Fritz, D., Hastings, J. & Huang, Z. (2012). Demonstration of self-seeding in a hard-X-ray free-electron laser. Nat. Photonics 1, 693698.
Andriyash, I.A., d'Humieres, E., Tikhonchuk, V.T. & Balcou, Ph. (2012). X-ray amplification from a Raman free-electron laser. Phy. Rev. Lett. 109, 244802-1244802-5.
Andriyash, I.A., Lehe, R., Lifschitz, A., Thaury, C., Rax, J.-M., Krushelnick, K. & Malka, V. (2014). An ultracompact X-ray source based on a laser-plasma undulator. Nat. Commun. 5, 16.
Avetissian, H.K. (2016). Electron diffraction on a traveling wave: “Inelastic Kapitza–Dirac effect”. Laser Part. Beams 34, 480492.
Babaei, S. & Maraghechi, B. (2008). Plasma-loaded free-electron laser with thermal electron beam and background plasma. Phys. Plasmas 15, 013102-1013102-10.
Bellucci, S., Bini, S., Biryukov, V.M., Chesnokov, Y.A., Dabagov, S., Giannini, G., Guidi, V., Ivanov, Y.M. & Kotov, V.I. (2003). Experimental study for the feasibility of a crystalline undulator. Phys. Rev. Lett. 90, 034801-1034801-3.
Bonifacio, R., Robb, G.R.M. & Piovella, N. (2011). Harmonics in a quantum free electron laser: towards a compact, coherent γ-ray source. Opt. Commun. 284, 10041007.
Corde, S. & Phuoc, K. Ta (2011). Plasma wave undulator for laser-accelerated electrons. Phys. Plasmas 18, 033111-1033111-5.
Corde, S., Phuoc, K. Ta, Lambert, G., Fitour, R., Malka, V. & Rousse, A. (2013). A. Femtosecond x rays from laser–plasma accelerators. Rev. Mod. Phys. 85, 148.
Couhan, S. & Mishra, G. (2003). Effect of induced betatron motion on longitudinal wiggler free-electron laser gain. Laser Part. Beams 21, 5358.
Deng, A.H., Liu, J.S., Nakajima, K., Xia, C.Q., Wang, W.T., Li, W.T., Lu, H.Y., Zhang, H., Ju, J.J., Tian, Y., Wang, Ch., Li, R.X. & Xu, Z.Z. (2012). Control of electron-seeding phase in a cascaded laser wakefield accelerator. Phys. Plasmas 19, 023105-1023105-6.
Esarey, E., Schroeder, C.B. & Leemans, W.P. (2009). Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 12291280.
Fedele, R., Miano, G. & Vaccaro, V.G. (1990). The plasma undulator. Phys. Scr. T30, 192197.
Freund, H.P. & Antonsen, T.M. (1992). Principles of Free-electron Lasers. London: Chapman and Hall.
Gallardo, J.C., Fernow, R.C., Palmer, R. & Pellegrini, C. (1988). Theory of a free-electron laser with a Gaussian optical undulator. IEEE J. Quantum Electron. 24, 15571566.
Ganeev, R.A. (2012). Generation of harmonics of laser radiation in plasmas. Laser Phys. Lett. 9, 175194.
Geddes, C.G.R., Toth, Cs., van Tilborg, J., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538541.
Geloni, G., Kocharyan, V. & Saldin, E. (2011). A novel self-seeding scheme for hard X-ray FELs. J. Mod. Opt. 58, 13911403.
Gizzi, L.A., Galimberti, M., Giulietti, A., Giulietti, D., Tomassini, P., Borghesi, M., Campbell, D.H., Schiavi, A. & Willi, O. (2001). Relativistic laser interactions with preformed plasma channels and gamma-ray measurements. Laser Part. Beams 19, 181186.
Hasanbeigi, A., Moghani, S. & Mehdian, H. (2014). Linear theory of quantum two-stream instability in a magnetized plasma with a transverse wiggler magnetic field. Laser Part. Beams 32, 353358.
Hedayati, R., Jafari, S. & Batebi, S. (2015). Plasma effects on the free-electron laser gain with a plasma wave undulator. Plasma Phys. Control. Fusion 57, 085007.
Hosokai, T., Kinoshita, K., Ohkubo, T., Maekawa, A. & Uesaka, M. (2006). Observation of strong correlation between quasimonoenergetic electron beam generation by laser wakefield and laser guiding inside a preplasma cavity. Phys. Rev. E 73, 036407-1036407-8.
Huang, Z., Ding, Y. & Schroeder, C.B. (2012). Compact X-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator. Phy. Rev. Lett. 109, 204801-1204801-5.
Jafari, S. (2015). Low-frequency wiggler modes in the free-electron laser with a dusty magnetoplasma medium. Laser Phys. Lett. 12, 075002-1075002-10.
Jafarinia, F., Jafari, S. & Mehdian, H. (2013). Investigation of the electron trajectories and gain regimes of the whistler pumped free-electron laser. Phys. Plasmas 20, 043106-1043106-7.
Joshi, C., Katsoulens, T., Dawson, J.M., Yan, Y.T. & Slater, J.M. (1987). Plasma wave wigglers for free-electron lasers. IEEE J. Quantum Electron. 23, 15711577.
Lawler, J.E., Bisognano, J., Bosch, R.A., Chiang, T.C., Green, M.A., Jacobs, K., Miller, T., Wehlitz, R., Yavuz, D. & York, R.C. (2013). Nearly copropagating sheared laser pulse FEL undulator for soft x-rays. J. Phys. D: Appl. Phys. 46, 325501-1325501-11.
Liu, C.S., Tripathi, V.K. & Kumar, N. (2007). Vlasov formalism of the laser driven ion channel x-ray laser. Plasma Phys. Control. Fusion 49, 325.
Mahdizadeh, N. & Aghamir, F.M. (2013). Effects of finite beam and plasma temperature on the growth rate of a twostream free electron laser with background plasma. J. Appl. Phys. 113, 083305-1083305-5.
Malka, V. (2012). Laser plasma accelerators. Phys. Plasmas 19, 055501-1055501-11.
Mehdian, H., Jafari, S. & Hassanbeigi, A. (2010). Generation of stimulated emission from a relativistic beam by magnetized dusty plasma crystals (DPCs). Plasma Phys. Control. Fusion 52, 055005055019.
Oura, M., Wagai, T., Chainani, A., Miyawaki, J., Sato, H., Matsunami, M., Eguchi, R., Kiss, T., Yamaguchi, T., Nakatani, Y., Togashi, T., Katayama, T., Ogawa, K. & Yabashi, M. (2014). Development of a single-shot CCD-based data acquisition system for time-resolved X-ray photoelectron spectroscopy at an X-ray free-electron laser facility. J. Synchrotron Radiat. 21, 183.
Papadichev, V. (1999). An electrostatic undulator with single-polarity feed. Nucl. Instrum. Methods Phys. Res., Sect. A 429, 377385.
Ratner, D., Abela, R., Amann, J., Behrens, C., Bohler, D., Bouchard, G., Bostedt, C., Boyes, M., Chow, K., Cocco, D., Decker, F.J. & Ding, Y. (2015). Experimental demonstration of a soft x-ray self-seeded free-electron laser. Phy. Rev. Lett. 114, 054801054806.
Rykovanov, S.G., Schroeder, C.B., Esarey, E., Geddes, C.G.R. & Leemans, W.P. (2015). Plasma undulator based on laser excitation of wakefields in a plasma channel. Phy. Rev. Lett. 114, 054801054806.
Sazegari, V., Mirzaie, M. & Shokri, B. (2006). Ponderomotive acceleration of electrons in the interaction of arbitrarily polarized laser pulse with a tenuous plasma. Phys. Plasmas 13, 033102.
Sprangle, P. & Hafizi, B. (2014). High-power, high-intensity laser propagation and interactions. Phys. Plasmas 21, 055402-1055402-11.
Tantawi, S., Shumail, M., Neilson, J., Bowden, G., Chang, C., Hemsing, E. & Dunning, M. (2014). Experimental demonstration of a tunable microwave undulator. Phys. Rev. Lett. 112, 164802.
Thaury, C., Quéré, F., Geindre, J.-P., Levy, A., Ceccotti, T., Monot, P., Bougeard, M., Réau, F., d'Oliveira, P., Audebert, P., Marjoribanks, R. & Martin, Ph. (2007). Plasma mirrors for ultrahigh-intensity optics. Nat. Phys. 3, 424429.
Williams, R.L., Clayton, C.E., Joshi, C. & Katsouleas, T.C. (1993). Studies of classical radiation emission from plasma wave undulators. IEEE Trans. Plasma Sci. 21, 156166.
Wong, L.J., Kaminer, I., Ilic, O., Joannopoulos, J.D. & Soljačić, M. (2015). Towards graphene plasmon-based free-electron infrared to X-ray sources. Nat. Photonics 10, 4652.

Keywords

Related content

Powered by UNSILO

Effects of beam temperature and plasma frequency on the radiation growth rate of a FEL with a laser wiggler

  • N. Esmaeildoost (a1) and S. Jafari (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.