Skip to main content Accessibility help
×
Home

Effect of the axial magnetic field on coexisting stimulated Raman and Brillouin scattering of a circularly polarized beam

  • Ashish Vyas (a1), Swati Sharma (a1), Ram Kishor Singh (a1) and R.P. Sharma (a1)

Abstract

This paper presents a model to study the two prominent coexisting instabilities, stimulated Raman (SRS), and stimulated Brillouin scattering (SBS) in the presence of background axial magnetic field. In the context of laser-produced plasmas, this model is very useful in the situations where a self-generated axial magnetic field is present as well as where an external axial magnetic field is applied. Due to the interplay between both the scattering processes, the behavior of one scattering process is greatly modified in the presence of another coexisting scattering process. The impact of this coexisting phenomenon and axial magnetic field on the back reflectivity of scattered beams has been explored. It has been demonstrated that the back reflectivity gets modified significantly due to the coexistence of both the scattering processes (SRS and SBS) as well as due to the axial magnetic field. Results are also compared with the three-wave interaction case (isolated SRS or SBS case).

Copyright

Corresponding author

Address correspondence and reprint requests to: R.K. Singh, Centre for Energy Studies, IIT Delhi, Delhi, 110016, India. E-mail: ram007kishor@gmail.com

References

Hide All
Baeva, T., Gordienko, S. & Pukhov, A. (2006). Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74, 046404.
Barr, H.C., Berwick, S.J. & Mason, P. (1998). Six-wave forward scattering of short-pulse laser light at relativistic intensities. Phys. Rev. Lett. 81, 2910.
Briand, J., Adrian, V., Tamer, M.El., Gomes, A., Quemener, Y., Dinguirard, J.P. & Kieffer, J.C. (1985). Axial magnetic fields in laser-produced plasmas. Phys. Rev. Lett. 54, 38.
Chen, F.F. (1984). Introduction to Plasma Physics and Controlled Fusion. New York: Plenum Press.
Guérin, S., Laval, G., Mora, P., Adam, J.C., Heron, A. & Bendib, A. (1995). Modulational and Raman instabilities in the relativistic regime. Phys. Plasmas 2, 2807.
Guérin, S., Mora, P. & Laval, G. (1998). Parametric instabilities due to relativistic electron mass variation. Phys. Plasmas 5, 376.
Hao, L., Liu, Z.J., Hu, X.Y. & Zheng, C.Y. (2013). Competition between the stimulated Raman and Brillouin scattering under the strong damping condition. Laser Part. Beams 31, 203.
Harding, A.K. & Lai, D. (2006). Physics of strongly magnetized neutron stars. Rep. Progr. Phys. 69, 9.
Hellsten, T. & Villard, L. (1988). Power deposition for ion cyclotron heating in large tokamaks. Nucl. Fusion 28, 285.
Khan, M., Das, C., Chakraborty, B., Desai, T., Pant, H.C., Srivastava, M.K. & Lawande, S.V. (1998 a). Self-generated magnetic field and Faraday rotation in laser produced plasma. Phys. Rev. E 58, 925.
Khan, M., Sarkar, S., Desai, T. & Pant, H.C. (1998 b). Modification of stimulated Brillouin scattering due to magnetic anisotropy in laser plasma interaction. Laser Part. Beams 16, 491.
Kolber, T., Rozmus, W. & Tikhonchuk, V.T. (1995). Saturation of backward stimulated Raman scattering and enhancement of laser light scattering in plasmas. Phys. Plasmas 2, 256.
Kruer, W.L. (1974). The Physics of Laser Plasma Interaction. New York: Addison-Wesley.
Labaune, C., Baldis, H.A., Renard, N., Schifano, E. & Michard, A. (1997). Interplay between ion acoustic waves and electron plasma waves associated with stimulated Brillouin and Raman scattering. Phys. Plasmas 4, 423.
Li, X.Y., Wang, J.X., Zhu, W.J., Ye, Y., Li, J. & Yu, Y. (2011). Enhanced inner-shell x-ray emission by femtosecond-laser irradiation of solid cone targets. Phys. Rev. E 83, 046404.
Lindl, J.D., Amendt, P., Berger, R.L., Glendining, S.G., Glenzer, S.H., Hann, S.W., Kauffman, R.L., Landen, O.L. & Suter, L. (2004). The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas 11, 339.
Liu, C.S. & Tripathri, V.K. (1994). Interaction of Electromagnetic waves with Electron beams and Plasmas. Singapore: World Scientific.
Mahmoud, S.T. & Sharma, R.P. (2001). Effect of pump depletion and self-focusing (hot spot) on stimulated Raman scattering in laser-plasma interaction. Laser Part. Beams 64, 613.
Michel, D.T., Depierreux, S., Stenz, C., Tassin, V. & Labaune, C. (2010). Exploring the saturation levels of stimulated Raman scattering in the absolute regime. Phys. Rev. Lett. 104, 255001.
Mondal, S., Narayanan, V., Ding, W.J., Lad, A.D., Hao, B., Ahmad, S., Wang, W.M., Sheng, Z.M., Sengupta, S., Kaw, P., Das, A. & Kumar, G.R. (2012). Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas. Proc. Natl. Acad. Sci. USA 109, 8011.
Montgomery, D.S., Albright, B.J., Barnak, D.H., Chang, P.Y., Davies, J.R., Fiksel, G., Froula, D.H., Kline, J.L., Macdonald, M.J., Sefkow, A.B., Yin, L. & Betti, R. (2015). Use of external magnetic fields in hohlraum plasmas to improve laser-coupling. Phys. Plasmas 22, 010703.
Nicolaï, P., Vandenboomgaerde, M., Canaud, B. & Chaigneau, F. (2000). Effects of self-generated magnetic fields and nonlocal electron transport in laser produced plasmas. Phys Plasmas 7, 4250.
Nijmudin, Z., Tatarakis, M., Pukhov, A., Clark, E.L., Dangor, A.E., Fayre, J., Malka, V., Neely, D., Santala, M.I.K. & Krushelnick, K. (2001). Measurements of the inverse faraday effect from relativistic laser interactions with an underdense plasma. Phys. Rev. Lett. 87, 215004.
Paknezhad, A. (2012). Effect of relativistic nonlinearity on the growth rate of Brillouin instability in the interaction of a short laser pulse with an underdense plasma. Phys. Scr. 86, 065402.
Perkins, F.W. (1977). Heating tokamaks via the ion-cyclotron and ion-ion hybrid resonances. Nucl. Fusion 17, 1197.
Remington, B.A., Drake, R.P., Takabe, H. & Arnett, D. (1999). Modeling astrophysical phenomena in the laboratory with intense lasers. Science 284, 1488.
Sandhu, A.S., Dharmadhikari, A.K., Rajeev, P.P., Kumar, G.R., Sengupta, S., Das, A. & Kaw, P.K. (2002). Laser-generated ultrashort multimegagauss magnetic pulses in plasmas. Phys. Rev. Lett. 89, 225002.
Sentoku, Y., Rahl, H., Mima, K., Tanaka, K.A. & Kishimoto, Y. (1999). Plasma jet formation and magnetic-field generation in the intense laser plasma under oblique incidence. Phys. Plasmas 6, 2855.
Sharma, R.P. & Dragila, R. (1988). Effect of a self-generated dc-magnetic field on forward Raman scattering and hot electrons in laser produced plasmas. Phys. Fluids 31, 1695.
Sharma, R.P., Vyas, A. & Singh, R.K. (2013). Effect of laser beam filamentation on coexisting stimulated Raman and Brillouin Scattering. Phys. Plasmas 20, 102108.
Shuller, S. & Porzio, A. (2010). Order statistics and extreme properties of spatially smoothed laser beams in laser-plasma interaction. Laser Part. Beams 28, 463.
Sodha, M.S., Sharma, R.P. & Kaushik, S.C. (1976). Interaction of intense laser beams with plasma waves: stimulated Raman scattering. J. Appl. Phys. 47, 3518.
Srivastava, M.K., Lawande, S.V., Khan, M., Das, C. & Chakraborty, B. (1992). Axial magnetic field generation by ponderomotive force in a laser-produced plasma. Phys. Fluids B 4, 4086.
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267.
Tajima, T. & Mourou, G. (2002). Zettawatt–exawatt lasers and their applications in ultrastrong-field physics. Phys. Rev. ST 5, 031301.
Vyas, A., Singh, R.K. & Sharma, R.P. (2014 a). Combined effect of relativistic and ponderomotive filamentation on coexisting stimulated Raman and Brillouin scattering. Phys. Plasmas 21, 112113.
Vyas, A., Singh, R.K. & Sharma, R.P. (2014 b). Study of coexisting stimulated Raman and Brillouin scattering at relativistic laser power. Laser Part. Beams 32, 657.
Vyas, A., Singh, R.K. & Sharma, R.P. (2016). Effect of the magnetic field on coexisting stimulated Raman and Brillouin back scattering of an extraordinary mode. Phys. Plasmas 23, 012107.
Walsh, C.J., Villeneuve, D.M. & Baldis, H.A. (1984). Electron plasma-wave production by stimulated Raman scattering: competition with stimulated Brillouin scattering. Phys. Rev. Lett. 53, 1445.
Wang, X., Krishnan, M., Saleh, N., Wang, H. & Umstadter, D. (2000). Electron acceleration and the propagation of ultrashort high-intensity laser pulses in plasmas. Phys. Rev. Lett. 84, 5324.

Keywords

Related content

Powered by UNSILO

Effect of the axial magnetic field on coexisting stimulated Raman and Brillouin scattering of a circularly polarized beam

  • Ashish Vyas (a1), Swati Sharma (a1), Ram Kishor Singh (a1) and R.P. Sharma (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.