Skip to main content Accessibility help
×
Home

Effect of relativistic mutual interaction of two laser beams on the growth of laser ripple in plasma

  • GUNJAN PUROHIT (a1), P.K. CHAUHAN (a1), R.P. SHARMA (a1) and H.D. PANDEY (a1)

Abstract

This paper presents an effect of relativistic mutual interaction of two laser beams of different frequencies on the growth of a laser ripple in laser produced plasmas. The nonlinearity due to relativistic mass variation depends not only on the intensity of one laser but also on the second laser. Therefore, one laser beam affects the dynamics of the second beam and hence a mutual nonlinear interaction (cross-focusing) takes place. The dynamical equations governing the laser intensity of two laser beams and the perturbation present on one laser beam (ripple) have been set up and a numerical solution has been presented for typical laser plasma parameters. It is found that a change in the intensity of the second laser beam can affect the growth of the laser ripple significantly. This study is important in plasma beat wave excitation and collective laser particle accelerators.

Copyright

Corresponding author

Address correspondence and reprint requests to: R.P. Sharma, Centre for Energy Studies, Indian Institute of Technology, New Delhi 110016, India. E-mail: rpsharma@ces.iitd.ernet.in

References

Hide All

REFERENCES

Akhamanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in nonlinear medium. Sov. Phys. Uspekhi 10, 609635.
Berger, R.L., Lasinski, B.F., Langdon, A.B., Kaiser, T.B., Afeyan, B.B., Cohen, B.I., Still, C.H. & Williams, E.A. (1995). Influence of spatial and temporal laser beam smoothing on stimulated Brillouin scattering in filamentarty laser light. Phys. Rev. Lett. 75, 1078.
Blue, B.E., Clayton, C.E., O'Connell, C.L., Decker, F.J., Hogan, M.J., Huang, C., Iverson, R., Joshi, C., Katsouleas, T.C., Marsh, K.A., Mori, W.B. & Walz, D. (2003). Parametric exploration of intense positron beam-plasma interactions. Laser Part. Beams 21, 497504.
Darrow, C., Umstadter, D., Katsouleas, T., Mori, W.B., Clayton, C.E. & Joshi, C. (1986). Saturation of beat-excited plasma waves by electrostatic mode coupling. Phys. Rev. Lett. 56, 26222632.
Esarey, E., Ting, A. & Sprangle, P. (1988). Relativistic focusing and beat wave phase velocity control in plasma beat wave accelerator. Appl. Phys. Lett. 53, 12611268.
Gorbunov, L.M. & Kirsanov, V.I. (1987). Sov. Phys. JETP 66, 290.
Huller, S., Mounaix, Ph. & Pesme, D. (1996). Phys. Scr. T63, 151.
Huller, S., Mounaix, Ph., Pesme, D. & Tikhonchuk, V.T. (1997). Interaction of two neighboring laser beams taking in to account the effect of plasma hydrodynamics. Phys. Plasmas 4, 26702680.
Joshi, C., Tajima, T., Dawson, J.M., Baldis, H.A. & Ebrahim, N.A. (1981). Forward Raman instability and electron acceleration. Phys. Rev. Lett. 47, 12851288.
Katsouleas, T. & Dawson, J.M. (1983). Unlimited electron acceleration in laser driven plasma waves. Phys. Rev. Lett. 51, 392395.
Kitagawa, Y., Matsumoto, T., Minamihata, T., Sawai, K., Matsuo, K., Mima, K., Nishihara, K., Azechi, H., Tanaka, K.A., Tkaba, H. & Nakai, S. (1992). Beat wave excitation of plasma wave and observation of accelerated electron. Phys. Rev. Lett. 68, 4851.
Krall, J. (1993). Enhanced acceleration in a self modulated laser wake-field accelerator. Phys. Rev. A. 48, 21572161.
Manot, P. (1995). Experimental demonstration of relativistic self-channeling of a multi terawatt laser pulse in an under dense plasma. Phys. Rev. Lett. 74, 29532956.
Mckinstrie, C.J. & Bingham, R. (1989). The modulation instability of coupled waves. Phys. Fluids B1, 230237.
Mckinstrie, C.J. & Russell, A. (1988). Nonlinear focusing of coupled waves. Phys. Rev. Lett 61, No.-21, 29292932.
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with super intense lasers: Concepts, problems, and prospective. Laser Part. Beams 22, 512.
Nakajima, K., Fisher, D., Kavakubo, T., Nakanishi, H., Ogata, A., Kato, Y., Kitagowa, Y., Kodama, P., Mima K., Sriraga, H., Suzuki, K., Yamakawa, K., Sakawa, Y., Shoji, T., Nishida, Y., Yugami, N., Downe, M., &Tajima, T. (1995). Observation of ultrahigh electron acceleration by a self modulated intense short laser pulse. Phys. Rev. Lett. 74, 44284431.
Purohit, G., Pandey, H.D. & Sharma, R.P. (2003). Effect of cross focusing of two laser beams on the growth of laser ripple in plasma. Laser Part. Beams 21, 567572.
Ren, C., Hemker, R.G., Fonseca, R.A., Duda, B.J. & Mori, W.B. (2000). Mutual interaction of laser beams: Braided light. Phys. Rev. Lett. 85, 21242127.
Saini, N.S. & Gill, T.S. (2004). Enhanced Raman scattering of a rippled laser beam in a magnetized collisional plasma. Laser Part. Beams 22, 3540.
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Progress in Optics 13, 171, North–Holland Publishing Company–Amsterdam, Oxford.
Shukla, P.K., Rao, N.N., Yu, M.Y. & Tsintsadze, N.L. (1986). Relativistic non-linear effects in plasma. Phys. Report 138, 1149.
Sodha, M.S., Govind, Tewari, D.P., Sharma, R.P., &Kaushik, S.C. (1979). Excitation of a plasma wave by two coaxial Gaussian EM beams. J. Appl. Phys. 50(1), 158164.
Sprangle, P. & Esarey, E. (1991). Stimulated backscattered harmonic generation from intense laser interaction with beams and plasmas. Phys. Rev. Lett. 67, 20212024.
Sprangle, P., Esarey, E., Krall, J. & Joyce, G. (1992). Propagation and guiding of intense laser pulse in plasmas. Phys. Rev. Lett. 69, 22002003.
Sprangle, P., Esarey, E. & Tang, C.M. (1990). Phy. Rev. A 64, 2011.
Sprangle, P., Tang, C.M. & Esarey, E. (1987). IEEE Trans. Plasma Sci. 15, 145.
Sprangle, P., Esarey, E., Ting, A. & Joyce, G. (1988). Laser wakefield acceleration and relativistic optical guiding. Appl. Phys. Lett. 53, 21462148.
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.
Toy, M.M. & Shen, Y.S. (1969). Phys. Rev. Lett. 22, 994.
Wyrtele, J.S. (1993). Advance accelerator Concepts, AIP, New York.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed