Skip to main content Accessibility help
×
×
Home

Effect of high-Z dopant on the laser-driven ablative Richtmyer–Meshkov instability

  • B. Xu (a1), Y. Ma (a1), X. Yang (a1), W. Tang (a1), S. Wang (a1), Z. Ge (a1), Y. Zhao (a1) and Y. Ke (a1)...

Abstract

The effects of high-Z dopant on the laser-driven ablative Richtmyer–Meshkov instability (RMI) are investigated by theoretical analysis and radiation hydrodynamics simulations. It is found that the oscillation amplitude of ablative RMI depends on the ablation velocity, the blow-off plasma velocity and the post-shock sound speed. Owing to enhancing the radiation at the plasma corona and increasing the radiation temperature at the ablation front, the high-Z dopant in plastic target can significantly increase the ablation velocity and the blow-off plasma velocity, leading to an increase in oscillation frequency and a reduction in oscillation amplitude of the ablative RMI. The high-Z dopant in plastic target is beneficial to reduce the seed of ablative Rayleigh–Taylor instability. These results are helpful for the design of direct drive inertial confinement fusion capsules.

Copyright

Corresponding author

Address correspondence and reprint requests to: B. Xu, College of Science, National University of Defense Technology, Changsha 410073, China. E-mail: xubb2010@163.com

References

Hide All
Aglitskiy, Y., Karasik, M., Velikovich, A.L., Serlin, V., Weaver, J.L., Kessler, T.J., Nikitin, S.P., Schmitt, A.J., Obenschain, S.P., Metzler, N. & Oh, J. (2012). Observed transition from Richtmyer-Meshkov jet formation through feedout oscillations to Rayleigh–Taylor instability in a laser target. Phys. Plasmas 19, 102707.
Aglitskiy, Y., Velikovich, A.L., Karasik, M., Serlin, V., Pawley, C.J., Schmitt, A.J., Obenschain, S.P., Mostovych, A.N., Gardner, J.H. & Metzler, N. (2001). Direct observation of mass oscillations due to ablative Richtmyer–Meshkov instability in plastic targets. Phys. Rev. Lett. 87, 26.
Aglitskiy, Y., Velikovich, A.L., Karasik, M., Serlin, V., Pawley, C.J., Schmitt, A.J., Obenschain, S.P., Mostovych, A.N., Gardner, J.H. & Metzler, N. (2002). Direct observation of mass oscillations due to ablative Richtmyer–Meshkov instability and feedout in planar plastic targets. Phys. Plasmas 9, 2264.
Antoine, L. (2003). Bulk turbulent transport and structure in Rayleigh–Taylor, Richtmyer–Meshkov, and variable acceleration instabilities. Laser Part. Beams 21, 305310.
Atzeni, S. & Meyer-Ter-Vehn, J. (2004). The Physics of Inertial Fusion. Oxford: Oxford University Press.
Betti, R., Goncharov, V.N., McCrory, R.L. & Verdon, C.P. (1995). Self-consistent cutoff wave number of the ablative Rayleigh–Taylor instability. Phys. Plasmas 2, 3844.
Betti, R., Goncharov, V.N., McCrory, R.L. & Verdon, C.P. (1996). Self-consistent stability analysis of ablation fronts in inertial confinement fusion. Phys. Plasmas 3, 2122.
Betti, R., Goncharov, V.N., McCrory, R.L. & Verdon, C.P. (1998). Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion. Phys. Plasmas 5, 1446.
Bodner, S.E., Colombant, D.G., Garder, J.H., Lehmberg, R.H. & Obenschain, S.T. (1998). Direct-drive laser fusion: status and prospects. Phys. Plasmas 5, 19011918.
Eidmann, K. (1994). Radiation transport and atomic physics of plasmas. Laser Part. Beams 12, 22.
Fujioka, S., Sunahara, A., Nishihara, K, Ohnishi, N., Johzaki, T., Shiraga, H., Shigemori, K., Nakai, M., Ikegawa, T., Murakami, M., Nagai, K., Norimatsu, T., Azechi, H. & Yamanaka, T. (2004 a). Suppression of the Rayleigh-Taylor instability due to self-radiation in a multi-ablation target. Phys. Rev. Lett. 92, 195001.
Fujioka, S., Sunahara, A., Ohnishi, N., Tamari, Y., Nishihara, K., Azechi, H., Shiraga, H., Nakai, M., Shigemori, K., Sakaiya, T., Tanaka, M., Otani, K., Okuno, K., Watari, T., Yamada, T., Murakami, M., Nagai, K., Norimatsu, T., Izawa, Y., Nozaki, S. & Chen, Y. (2004 b). Suppression of Rayleigh–Taylor instability due to radiative ablation in brominated plastic targets. Phys. Plasmas 11, 2814.
Goncharov, V. (1999). Theory of the ablative Richtmyer–Meshkov instability. Phys. Rev. Lett. 82, 2091.
Goncharov, V.N., Betti, R., McCrory, R.L., Sorotokin, P. & Verdon, C.P. (1996 a). Self-consistent stability analysis of ablation fronts with large Froude numbers. Phys. Plasmas 3, 1402.
Goncharov, V.N., Betti, R., McCrory, R.L. & Verdon, C.P. (1996 b). Self-consistent stability analysis of ablation fronts with small Froude numbers. Phys. Plasmas 3, 4665.
Goncharov, V.N., Gotchev, O.V., Vianello, E., Boehly, T.R., Knauer, J.P., McKenty, P.W., Radha, P.B., Regan, S.P., Sangster, T.C., Skupsky, S., Smalyuk, V.A., Betti, R., McCrory, R.L., Meyerhofer, D.D. & CherfilsClérouin, C. (2006). Early stage of implosion in inertial confinement fusion: shock timing and perturbation evolution. Phys. Plasmas 13, 012702.
Kawata, S., Sato, T., Teramoto, T., Bandoh, E., Masubichi, Y. & Takahashi, I. (1993). Radiation effect on pellet implosion and Rayleigh–Taylor instability in light-ion beam inertial confinement fusion. Laser Part. Beams 11, 757.
Kemp, A.J. & Meyer-ter-Vehn, J. (1998). An equation of state code for hot dense matter, based on the QEOS description. Nuclear Instruments and Methods in Physics Research A415, 674676.
Keskinen, M.J., Velikovich, A.L. & Schmitt, A. (2006). Multimode evolution of the ablative Richtmyer–Meshkov and Landau–Darrieus instability in laser imprint of planar targets. Phys. Plasmas 13, 122703.
Meshkov, E.E. (1969). Instability of the interface between two gases accelerated by a shock wave. Fluid Dyn. 4, 101104.
Ogoyski, A.I., Kawata, S. & Popova, P.H. (2010). Code OK3–an upgraded version of OK2 with beam wobbling function. Comput. Phys. Commun. 181, 1332.
Peterson, J.L., Clark, D.S., Masse, L.P. & Suter, L.J. (2014). The effects of early time laser drive on hydrodynamic instability growth in National Ignition Facility implosions. Phys. Plasmas 21, 092710.
Piriz, A.R., Sanz, J. & Ibanez, L.F. (1997). Rayleigh–Taylor instability of steady ablation fronts: the discontinuity model revisited. Phys. Plasmas 4, 1117.
Rayleigh, L. (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. R. Math. Soc. 14, 170177.
Richtmyer, R.D. (1960). Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297319.
Robey, H.F., Smalyuk, V.A., Milovich, J.L., Döppner, T., Casey, D.T., Baker, K.L., Peterson, J.L., Bachmann, B., BerzakHopkins, L.F., Bond, E., Caggiano, J.A., Callahan, D.A., Celliers, P.M., Cerjan, C., Clark, D.S., Dixit, S.N., Edwards, M.J., Gharibyan, N., Haan, S.W., Hammel, B.A., Hamza, A.V., Hatarik, R., Hurricane, O.A., Jancaitis, K.S., Jones, O.S., Kerbel, G.D., Kroll, J.J., Lafortune, K.N., Landen, O.L., Ma, T., Marinak, M.M., MacGowan, B.J., MacPhee, A.G., Pak, A., Patel, M., Patel, P.K., Perkins, L.J., Sayre, D.B., Sepke, S.M., Spears, B.K., Tommasini, R., Weber, C.R., Widmayer, C.C., Yeamans, C., Giraldez, E., Hoover, D., Nikroo, A., Hohenberger, M. & Johnson, M.G. (2016). Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping. Phys. Plasmas 23, 056303.
Sanz, J. (1996). Self-consistent analytical model of the Rayleigh–Taylor instability in inertial confinement fusion. Phys. Rev. E 53, 4026.
Spitzer, L. & Härm, R. (1953). Transport phenomena in a completely ionized gas. Phys. Rev. 89, 977.
Taylor, G. (1950). The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. Roy. Soc. London A 201, 192.
Velikovich, A., Dahlburg, J. & Taylor, R. (1998). Saturation of perturbation growth in ablatively driven planar laser targets. Phys. Plasmas 5, 1491.
Youngs, D.L. (1994). Numerical simulation of mixing by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Plasmas 12, 725750.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed