Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T13:49:17.140Z Has data issue: false hasContentIssue false

Effect of double layers on magnetosphere–ionosphere coupling

Published online by Cambridge University Press:  09 March 2009

Robert L. Lysak
Affiliation:
School of Physics and Astronomy, University of Minnesota
Mary K. Hudson
Affiliation:
Department of Physics and Astronomy, Dartmouth College

Abstract

The earth's auroral zone contains dynamic processes occurring on scales from the length of an auroral zone field line (about 10RE) which characterizes Alfven wave propagation to the scale of microscopic processes which occur over a few Debye lengths (less than 1 km). These processes interact in a time-dependent fashion since the current carried by the Alfven waves can excite microscopic turbulence which can in turn provide dissipation of the Alfven wave energy. This review will first describe the dynamic aspects of auroral current structures with emphasis on consequences for models of microscopic turbulence. In the second part of the paper a number of models of microscopic turbulence will be introduced into a large scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. In particular, we will compare the effect of a double layer electric field which scales with the plasma temperature and Debye length with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is found that the double layer model is less diffusive than the resistive model leading to the possibility of narrow, intense current structures.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, C., Hudson, M. K. & Lotko, W. 1985 Phys. Fluids, 28, 1055.CrossRefGoogle Scholar
Chiu, Y. T. & Cornwall, J. M. 1980 J. Geophys. Res., 85, 543.CrossRefGoogle Scholar
Dum, C. T. & Dupree, 1970 Phys. Fluids. 13, 2064.CrossRefGoogle Scholar
Fridman, M. & Lemaire, J. 1980 J. Geophys. Res. 85, 664.CrossRefGoogle Scholar
Goertz, C. K. & Boswell, R. W. 1979 J. Geophys. Res., 84, 7239.CrossRefGoogle Scholar
Kindel, J. M., Barnes, C. & Forslund, D. W. 1981 Physics of Auroral Arc Formation, American Geophysical Union Geophysical Monograph 25, Akasofu, S.-I. and Kan, J. R. (eds.), p. 296.Google Scholar
Lyons, L. R., 1980 J. Geophys. Res. 85, 17.CrossRefGoogle Scholar
Lyons, L. R., Evans, D. S. & Lundin, R. 1979 J. Geophys. Res. 84, 457.CrossRefGoogle Scholar
Lysak, R. L. & Carlson, C. W. 1981 Geophys. Res. Lett. 8, 269.CrossRefGoogle Scholar
Lysak, R. L. & Dum, C. T. 1981 J. Geophys. Res. 88, 365.CrossRefGoogle Scholar
Lysak, R. L., 1985 J. Geophys. Res., 90, 4178.CrossRefGoogle Scholar
Lysak, R. L. 1986 J. Geophys. Res., 91, 7047.CrossRefGoogle Scholar
Mallinckrodt, A. J. & Carlson, C. W. 1978 J. Geophys. Res. 83, 1426.CrossRefGoogle Scholar
Miura, A. & Sato, T. 1980 J. Geophys. Res. 85, 73.CrossRefGoogle Scholar
Rothwell, P. L., Silevitch, M. B. & Block, L. P. 1984 J. Geophys. Res. 89, 8941.CrossRefGoogle Scholar
Sato, T., 1978 J. Geophys. Res. 83, 1042.CrossRefGoogle Scholar
Sato, T. & Okuda, H. 1980 J. Geophys. Res. 86, 3357.CrossRefGoogle Scholar
Sonnerup, B. U. O. 1980 J. Geophys. Res. 85, 2017.CrossRefGoogle Scholar
Southwood, D. J. & Hughes, W. J. 1983 Space Sci. Rev. 35, 301.CrossRefGoogle Scholar
Vasyliunas, V. M. 1970 in Particles and Fields in the Mangetosphere, McCormac, B. (ed.), D. Reidel, Hingham, Mass., p. 29.Google Scholar