Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T11:51:48.623Z Has data issue: false hasContentIssue false

Dynamics of laser induced micro-shock waves and hot core plasma in quiescent air

Published online by Cambridge University Press:  03 May 2013

Ch. Leela
Affiliation:
Advanced Center of Research in High Energy Materials, University of Hyderabad, Gachibowli, Hyderabad, India
Suman Bagchi
Affiliation:
Advanced Center of Research in High Energy Materials, University of Hyderabad, Gachibowli, Hyderabad, India
V. Rakesh Kumar
Affiliation:
Advanced Center of Research in High Energy Materials, University of Hyderabad, Gachibowli, Hyderabad, India
Surya P. Tewari
Affiliation:
Advanced Center of Research in High Energy Materials, University of Hyderabad, Gachibowli, Hyderabad, India
P. Prem Kiran*
Affiliation:
Advanced Center of Research in High Energy Materials, University of Hyderabad, Gachibowli, Hyderabad, India
*
Address correspondence and reprint requests to: P. Prem Kiran, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad, India500046. E-mails: premkiranuoh@gmail.com, premsp@uohyd.ernet.in

Abstract

We present our results on spatio-temporal evolution of laser plasma produced shockwaves (SWs) and hot core plasma (HCP) created by focused second harmonic (532 nm, 7 ns) of Nd-YAG laser in quiescent atmospheric air at f/#10 focusing geometry. Time resolved shadowgraphs imaged with the help of an ICCD camera with 1.5 ns temporal resolution revealed the presence of two co-existing sources simultaneously generating SWs. Each of the two sources independently led to a spherical SW following Sedov-Taylor theory along the laser propagation direction with a maximum velocity of 7.4 km/s and pressure of 57 MPa. While the interaction of SWs from the two sources led to a planar SW in the direction normal to the laser propagation direction. The SW detaches from the HCP and starts expanding into the ambient air at around 3 µs indicating the onset of asymmetric expansion of the HCP along the z-axis. The asymmetric expansion is observed till 10 µs beyond which the SW leaves the field of view followed by a deformation of the irradiated region in the XY-plane due to the penetration of surrounding colder air in to the HCP. The deformation in the XY-plane lasts till 600 µs. The dynamics of rapidly expanding HCP is observed to be analogous to that of cavitation bubble dynamics in fluids.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batani, D., Balducci, A., Beretta, D., Bernardinello, A., Lower, T., Koeing, M., Benuzzi, A., Faral, B. & Hall, T. (2000). Equation of state data for gold in the pressure range <10 TPa. Phys. Rev. B 61, 92879294.CrossRefGoogle Scholar
Batani, D., Stabile, H., Ravasio, A., Desai, T., Lucchini, G., Strati, F., Ullschmied, J., Krousky, E., Skala, J., Kralikova, B., Pfeifer, M., Kadlec, C., Mocek, T., Präg, A., Nishimura, H., Ochi, Y., Kilpio, A., Shashkov, E., Stuchebrukhov, I., Vovchenko, V. & Krasuyk, I. (2003) Shock pressure induced by 0.44 µm laser radiation on aluminum targets. Laser Part. Beams 21, 481487.CrossRefGoogle Scholar
Batani, D., Stabile, H., Ravasio, A., Lucchini, G., Strati, F., Desai, T., Ullschmied, J., Krousky, E., Skala, J., Juha, L., Kralikova, B., Pfeifer, M., Kadlec, Ch., Mocek, T., Präg, A., Nishimura, H. & Ochi, Y. (2003). Ablation Pressure scaling at short laser wavelength. Phys. Rev. E 68, 067403/1–4.CrossRefGoogle ScholarPubMed
Bigoni, D., Milani, M., Jafer, R., Liberatore, C., Tarazi, S., Antonelli, L. & Batani, D. (2010). Influence of mechanical and thermal material properties on laser-produced crater morphology and their study by focused ion beam & scanning electron microscope imaging. J. Laser Micro/Nanoengin. 5, 169174.CrossRefGoogle Scholar
Bradley, D., Sheppard, C.G.W., Suardjaja, I.M. & Woolley, R. (2004). Fundamentals of high-energy spark ignition with lasers Combus. Flame 138, 5577.CrossRefGoogle Scholar
Chen, X., Xu, R.Q., Shen, Z.H., Lu, J. & Ni, X.W. (2004). Optical investigation of cavitation erosion by laser-induced bubble collapse. Opt. Laser Techn. 36, 197203.CrossRefGoogle Scholar
Chen, Y.-L. & Lewis, J.W.L. (2001). Visualization of laser-induced breakdown and ignition. Opt. Expr. 9, 360372.CrossRefGoogle ScholarPubMed
Cooper, P.W., (1996). Explosives Engineering. New York: Wiley-VCH.Google Scholar
Delius, M. (1994). Medical applications and bioeffects of extracorporeal shock waves. Shock Waves 4, 5572.CrossRefGoogle Scholar
Ding, K. & Ye, L. (2006). Laser Shock Peening Performance and simulation, Woodhead publishing Limited.CrossRefGoogle Scholar
Dors, I.G. & Parigger, C.G. (2003). Computational fluid-dynamic model of laser-induced breakdown in air. Appl. Opt. 42, 59785985.CrossRefGoogle ScholarPubMed
Dors, I.G., Parigger, C.G. & Lewis, J.W.L. (2000). Fluid effects following laser-induced optical breakdown. 38th Aerospace Sciences Meeting and Exhibit, paper AIAA 2000-0717, Reno, NV.CrossRefGoogle Scholar
Evans, L.R. & Morgan, C.G. (1969). Laser aberration effects in optics-frequency breakdown of gases. Phys. Rev. Lett. 22, 10991102.CrossRefGoogle Scholar
Ghosh, S. & Mahesh, K. (2008). Numerical simulation of the fluid dynamic effects of laser energy deposition in air. J. Fluid Mech. 605, 329354.CrossRefGoogle Scholar
Gupta, S.L., Pandey, P.K. & Thareja, R.K. (2013). Dynamics of laser ablated colliding plumes. Phys. Plasmas 20, 013511/1–10.CrossRefGoogle Scholar
Herbert, E., Balibar, S. & Caupin, F. (2006). Cavitation pressure in water. Phys. Rev. E 74, 041603/1–22.CrossRefGoogle ScholarPubMed
Hill, R.D., Rinker, R.G. & Wilson, H.D. (1980). Atmospheric nitrogen fixation by lightning. J. Atmos. Sci. 37, 179192.2.0.CO;2>CrossRefGoogle Scholar
Jeong, S.H., Greif. & Russo, R.E. (1998). Propagation of the shock wave generated from excimer laser heating of aluminum targets in comparison with ideal blast wave theory. Appl. Surf. Sci. 127–129, 10291034.CrossRefGoogle Scholar
Kawahara, M., Ioritani, N., Kambe, K., Orikasa, S. & Takayama, K. (1991). Anti-miss-shot control device for selective stone disintegration in extracorporeal shock wave lithotripsy. Shock Waves 1, 145148.CrossRefGoogle Scholar
Kudryashov, S.I., Paul, S., Lyon, K. & Allen, S.D. (2011). Dynamics of laser-induced surface phase explosion in silicon. Appl. Phys. Lett. 98, 254102/1–3.CrossRefGoogle Scholar
Kumar, M.A., Sreedhar, S., Barman, I., Dingari, N.C., Rao, S.V., Kiran, P.P., Tewari, S.P. & Kumar, G.M. (2011). Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis. Talanta 87, 5359.Google Scholar
Lauterborn, W. & Koch, A. (1987). Holographic observation of period-doubled and chaotic bubble oscillations in acoustic cavitation. Phys. Rev. A 35, 19741977.CrossRefGoogle ScholarPubMed
Lauterborn, W., Kurz, T., Geisler, R., Schanz, D. & Lindau, O. (2007). Acoustic cavitation, bubble dynamics and sonoluminescence Ultrasonics Sonochem. 14, 484491.CrossRefGoogle ScholarPubMed
Lim, K.Y., Quinto-Su, P.A., Klaseboer, E., Khoo, B.C., Venugopalan, V. & Ohl, C.-D. (2010). Nonspherical laser-induced cavitation bubbles. Phys. Rev. E 81, 016308/1–9.CrossRefGoogle ScholarPubMed
Luk'yanchuk, B. (2002). Laser Surface Cleaning. Singapore: World Scientific Publishing Co.CrossRefGoogle Scholar
Marmottant, P. & Hilgenfeldt, S. (2003). Controlled vesicle deformation and lysis by single oscillating bubbles Nat. 423, 153156.CrossRefGoogle ScholarPubMed
Marti-Lopez, L., Ocana, R., Porro, J.A., Morales, M. & Ocana, J.L. (2009). Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes. Appl. Opt. 48, 36713680.CrossRefGoogle ScholarPubMed
Miziolek, A.W., Palleschi, V. & Schechter, I. (2006). Laser-induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications. New York: Cambridge University Press, 140.CrossRefGoogle Scholar
Monot, P., Auguste, T., Lompre, L.A., Mainfray, G. & Manus, C. (1992). Focusing limits of terawatt laser in an underdense plasma. JOSA B 9, 15791584.CrossRefGoogle Scholar
Nath, A. & Khare, A. (2008). Measurement of charged particles and cavitation bubble expansion velocities in laser induced breakdown in water. Laser Part. Beams 26, 425432.CrossRefGoogle Scholar
Nath, A. & Khare, A. (2011). Transient evolution of multiple bubbles in laser induced breakdown in water. Laser Part. Beams 29, 19.CrossRefGoogle Scholar
Petkovsek, R. & Gregorcic, P. (2007). A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography. J. Appl. Phys. 102, 044909/1–9.CrossRefGoogle Scholar
Phipps, C.R., Reilly, J.P. & Campbell, J.W. (2000). Optimum parameters for laser launching objects into low Earth orbit. Laser Part. Beams 18, 661695.CrossRefGoogle Scholar
Porneala, C. & Willis, D.A. (2009). Time- resolved dynamics of nanosecond laser-induced phase explosion. J. Phys. D: Appl. Phys. 42, 155503/1–7.CrossRefGoogle Scholar
Schwarz, E., Gross, S., Fischer, B., Muri, I., Tauer, J. & Wintner, E. (2010). Laser-induced optical breakdown applied for laser spark ignition. Laser Part. Beams 28, 109119.CrossRefGoogle Scholar
Sedov, L.I. (1993). Similarity and Dimensional Methods in Mechanics. Boca Raton: CRC Press.Google Scholar
Shen, Y.R. (1984). The principles of Nonlinear Optics. New York: John-Wiley & Sons.Google Scholar
Siano, S., Pacini, G., Pini, R. & Salimbeni, R. (1998). Reliability of refractive fringe diagnostics to control plasma-mediated laser ablation. Opt. Commun. 154, 319324.CrossRefGoogle Scholar
Siano, S., Pini, R., Salimbeni, R. & Vannini, M. (1996). A Diagnostic set-up for time-resolved imaging of laser-induced ablation. Opt. Lasers Engin. 25, 112.CrossRefGoogle Scholar
Sobral, H., Villagran-Muniz, M., Navarro-Gonzalez, R. & Raga, A.C. (2000). Temporal evolution of the shock wave and hot core air in laser induced plasma. Appl. Phys. Lett. 77, 31583160.CrossRefGoogle Scholar
Thiyagarajan, M. & Scharer, J. (2008). Experimental investigation of ultraviolet laser induced plasma density and temperature evolution in air. J. Appl. Phys. 104, 013303/1–12.CrossRefGoogle Scholar
Thoroddsen, S.T., Takehara, K., Etoh, T.G. & Ohl, C.D. (2009). Spray and microjets produced by focusing a laser pulse into a hemispherical drop. Phys. Fluids 21, 112101/1–15.CrossRefGoogle Scholar
Wang, B., Komurasaki, K., Yamaguchi, T., Shimamura, K. & Arakawa, Y. (2010). Energy conversion on a glass-laser-induced blast wave in air. J. Appl. Phys. 108, 124911/1–6.CrossRefGoogle Scholar
Zel'dovich, Y.B. & Raizer, Y.P. (2002). Physics of SWs and High-Temperature Hydrodynamic phenomena. New York: Dover Publications.Google Scholar