Skip to main content Accessibility help
×
Home

Dynamics of laser induced micro-shock waves and hot core plasma in quiescent air

  • Ch. Leela (a1), Suman Bagchi (a1), V. Rakesh Kumar (a1), Surya P. Tewari (a1) and P. Prem Kiran (a1)...

Abstract

We present our results on spatio-temporal evolution of laser plasma produced shockwaves (SWs) and hot core plasma (HCP) created by focused second harmonic (532 nm, 7 ns) of Nd-YAG laser in quiescent atmospheric air at f/#10 focusing geometry. Time resolved shadowgraphs imaged with the help of an ICCD camera with 1.5 ns temporal resolution revealed the presence of two co-existing sources simultaneously generating SWs. Each of the two sources independently led to a spherical SW following Sedov-Taylor theory along the laser propagation direction with a maximum velocity of 7.4 km/s and pressure of 57 MPa. While the interaction of SWs from the two sources led to a planar SW in the direction normal to the laser propagation direction. The SW detaches from the HCP and starts expanding into the ambient air at around 3 µs indicating the onset of asymmetric expansion of the HCP along the z-axis. The asymmetric expansion is observed till 10 µs beyond which the SW leaves the field of view followed by a deformation of the irradiated region in the XY-plane due to the penetration of surrounding colder air in to the HCP. The deformation in the XY-plane lasts till 600 µs. The dynamics of rapidly expanding HCP is observed to be analogous to that of cavitation bubble dynamics in fluids.

Copyright

Corresponding author

Address correspondence and reprint requests to: P. Prem Kiran, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad, India500046. E-mails: premkiranuoh@gmail.com, premsp@uohyd.ernet.in

References

Hide All
Batani, D., Balducci, A., Beretta, D., Bernardinello, A., Lower, T., Koeing, M., Benuzzi, A., Faral, B. & Hall, T. (2000). Equation of state data for gold in the pressure range <10 TPa. Phys. Rev. B 61, 92879294.
Batani, D., Stabile, H., Ravasio, A., Desai, T., Lucchini, G., Strati, F., Ullschmied, J., Krousky, E., Skala, J., Kralikova, B., Pfeifer, M., Kadlec, C., Mocek, T., Präg, A., Nishimura, H., Ochi, Y., Kilpio, A., Shashkov, E., Stuchebrukhov, I., Vovchenko, V. & Krasuyk, I. (2003) Shock pressure induced by 0.44 µm laser radiation on aluminum targets. Laser Part. Beams 21, 481487.
Batani, D., Stabile, H., Ravasio, A., Lucchini, G., Strati, F., Desai, T., Ullschmied, J., Krousky, E., Skala, J., Juha, L., Kralikova, B., Pfeifer, M., Kadlec, Ch., Mocek, T., Präg, A., Nishimura, H. & Ochi, Y. (2003). Ablation Pressure scaling at short laser wavelength. Phys. Rev. E 68, 067403/1–4.
Bigoni, D., Milani, M., Jafer, R., Liberatore, C., Tarazi, S., Antonelli, L. & Batani, D. (2010). Influence of mechanical and thermal material properties on laser-produced crater morphology and their study by focused ion beam & scanning electron microscope imaging. J. Laser Micro/Nanoengin. 5, 169174.
Bradley, D., Sheppard, C.G.W., Suardjaja, I.M. & Woolley, R. (2004). Fundamentals of high-energy spark ignition with lasers Combus. Flame 138, 5577.
Chen, X., Xu, R.Q., Shen, Z.H., Lu, J. & Ni, X.W. (2004). Optical investigation of cavitation erosion by laser-induced bubble collapse. Opt. Laser Techn. 36, 197203.
Chen, Y.-L. & Lewis, J.W.L. (2001). Visualization of laser-induced breakdown and ignition. Opt. Expr. 9, 360372.
Cooper, P.W., (1996). Explosives Engineering. New York: Wiley-VCH.
Delius, M. (1994). Medical applications and bioeffects of extracorporeal shock waves. Shock Waves 4, 5572.
Ding, K. & Ye, L. (2006). Laser Shock Peening Performance and simulation, Woodhead publishing Limited.
Dors, I.G. & Parigger, C.G. (2003). Computational fluid-dynamic model of laser-induced breakdown in air. Appl. Opt. 42, 59785985.
Dors, I.G., Parigger, C.G. & Lewis, J.W.L. (2000). Fluid effects following laser-induced optical breakdown. 38th Aerospace Sciences Meeting and Exhibit, paper AIAA 2000-0717, Reno, NV.
Evans, L.R. & Morgan, C.G. (1969). Laser aberration effects in optics-frequency breakdown of gases. Phys. Rev. Lett. 22, 10991102.
Ghosh, S. & Mahesh, K. (2008). Numerical simulation of the fluid dynamic effects of laser energy deposition in air. J. Fluid Mech. 605, 329354.
Gupta, S.L., Pandey, P.K. & Thareja, R.K. (2013). Dynamics of laser ablated colliding plumes. Phys. Plasmas 20, 013511/1–10.
Herbert, E., Balibar, S. & Caupin, F. (2006). Cavitation pressure in water. Phys. Rev. E 74, 041603/1–22.
Hill, R.D., Rinker, R.G. & Wilson, H.D. (1980). Atmospheric nitrogen fixation by lightning. J. Atmos. Sci. 37, 179192.
Jeong, S.H., Greif. & Russo, R.E. (1998). Propagation of the shock wave generated from excimer laser heating of aluminum targets in comparison with ideal blast wave theory. Appl. Surf. Sci. 127–129, 10291034.
Kawahara, M., Ioritani, N., Kambe, K., Orikasa, S. & Takayama, K. (1991). Anti-miss-shot control device for selective stone disintegration in extracorporeal shock wave lithotripsy. Shock Waves 1, 145148.
Kudryashov, S.I., Paul, S., Lyon, K. & Allen, S.D. (2011). Dynamics of laser-induced surface phase explosion in silicon. Appl. Phys. Lett. 98, 254102/1–3.
Kumar, M.A., Sreedhar, S., Barman, I., Dingari, N.C., Rao, S.V., Kiran, P.P., Tewari, S.P. & Kumar, G.M. (2011). Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis. Talanta 87, 5359.
Lauterborn, W. & Koch, A. (1987). Holographic observation of period-doubled and chaotic bubble oscillations in acoustic cavitation. Phys. Rev. A 35, 19741977.
Lauterborn, W., Kurz, T., Geisler, R., Schanz, D. & Lindau, O. (2007). Acoustic cavitation, bubble dynamics and sonoluminescence Ultrasonics Sonochem. 14, 484491.
Lim, K.Y., Quinto-Su, P.A., Klaseboer, E., Khoo, B.C., Venugopalan, V. & Ohl, C.-D. (2010). Nonspherical laser-induced cavitation bubbles. Phys. Rev. E 81, 016308/1–9.
Luk'yanchuk, B. (2002). Laser Surface Cleaning. Singapore: World Scientific Publishing Co.
Marmottant, P. & Hilgenfeldt, S. (2003). Controlled vesicle deformation and lysis by single oscillating bubbles Nat. 423, 153156.
Marti-Lopez, L., Ocana, R., Porro, J.A., Morales, M. & Ocana, J.L. (2009). Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes. Appl. Opt. 48, 36713680.
Miziolek, A.W., Palleschi, V. & Schechter, I. (2006). Laser-induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications. New York: Cambridge University Press, 140.
Monot, P., Auguste, T., Lompre, L.A., Mainfray, G. & Manus, C. (1992). Focusing limits of terawatt laser in an underdense plasma. JOSA B 9, 15791584.
Nath, A. & Khare, A. (2008). Measurement of charged particles and cavitation bubble expansion velocities in laser induced breakdown in water. Laser Part. Beams 26, 425432.
Nath, A. & Khare, A. (2011). Transient evolution of multiple bubbles in laser induced breakdown in water. Laser Part. Beams 29, 19.
Petkovsek, R. & Gregorcic, P. (2007). A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography. J. Appl. Phys. 102, 044909/1–9.
Phipps, C.R., Reilly, J.P. & Campbell, J.W. (2000). Optimum parameters for laser launching objects into low Earth orbit. Laser Part. Beams 18, 661695.
Porneala, C. & Willis, D.A. (2009). Time- resolved dynamics of nanosecond laser-induced phase explosion. J. Phys. D: Appl. Phys. 42, 155503/1–7.
Schwarz, E., Gross, S., Fischer, B., Muri, I., Tauer, J. & Wintner, E. (2010). Laser-induced optical breakdown applied for laser spark ignition. Laser Part. Beams 28, 109119.
Sedov, L.I. (1993). Similarity and Dimensional Methods in Mechanics. Boca Raton: CRC Press.
Shen, Y.R. (1984). The principles of Nonlinear Optics. New York: John-Wiley & Sons.
Siano, S., Pacini, G., Pini, R. & Salimbeni, R. (1998). Reliability of refractive fringe diagnostics to control plasma-mediated laser ablation. Opt. Commun. 154, 319324.
Siano, S., Pini, R., Salimbeni, R. & Vannini, M. (1996). A Diagnostic set-up for time-resolved imaging of laser-induced ablation. Opt. Lasers Engin. 25, 112.
Sobral, H., Villagran-Muniz, M., Navarro-Gonzalez, R. & Raga, A.C. (2000). Temporal evolution of the shock wave and hot core air in laser induced plasma. Appl. Phys. Lett. 77, 31583160.
Thiyagarajan, M. & Scharer, J. (2008). Experimental investigation of ultraviolet laser induced plasma density and temperature evolution in air. J. Appl. Phys. 104, 013303/1–12.
Thoroddsen, S.T., Takehara, K., Etoh, T.G. & Ohl, C.D. (2009). Spray and microjets produced by focusing a laser pulse into a hemispherical drop. Phys. Fluids 21, 112101/1–15.
Wang, B., Komurasaki, K., Yamaguchi, T., Shimamura, K. & Arakawa, Y. (2010). Energy conversion on a glass-laser-induced blast wave in air. J. Appl. Phys. 108, 124911/1–6.
Zel'dovich, Y.B. & Raizer, Y.P. (2002). Physics of SWs and High-Temperature Hydrodynamic phenomena. New York: Dover Publications.

Keywords

Dynamics of laser induced micro-shock waves and hot core plasma in quiescent air

  • Ch. Leela (a1), Suman Bagchi (a1), V. Rakesh Kumar (a1), Surya P. Tewari (a1) and P. Prem Kiran (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed