Skip to main content Accessibility help
×
Home

Diagnosing laser-induced damage to optical thin films using peak sound pressure of shock waves

  • G. Jinman (a1) (a2), S. Junhong (a1) (a2), W. Shenjiang (a2), X. Junqi (a2), C. Lei (a1) and L. Ning (a2)...

Abstract

Laser-induced damage threshold (LIDT) is an important parameter used to describe the resistance of optical thin films to laser damage. The service life and cost of optical systems depend on the LIDT of the film. Thus, the precision with which the film's LIDT can be measured impacts how well the service life and cost of the system can be predicted. Therefore, it is important to find a precise approach to diagnose a film's laser-induced damage. In this paper, characteristics of the peak sound pressure of laser-induced plasma shock waves from thin films have been systematically investigated experimentally. We found that the peak sound pressure decays rapidly with propagation distance during air transmission. Based on a theoretical analysis of the relationship between the peak sound pressure and the laser damage to a film, we propose a method for diagnosing laser damage using the peak sound pressure of a thin film's shock wave. Our results show that this method can simplify implementation, which will provide a new method with which to diagnose laser damage to thin films.

Copyright

Corresponding author

Address correspondence and reprint requests to: G. Jinman and S. Junhong, School of Optoelectronics Engineering, Xi'an Technological University, Xuefu Road, Weiyang Distinct, Xi'an 710021, China. E-mail: gjm129@163.com; sujunhong@xatu.edu.cn

References

Hide All
Alekseev, V.N., Dmitriev, D.I., Charukhchev, A.V., Chernov, V.N., Kotilev, V.N., Liber, V.I. & Rukavishnikov, N.N. (2002). Express method of estimating laser-induced surface damage threshold for optical components. Laser Part. Beams 20(1), 133137.
Becker, J. & Bernhardt, A. (1994). ISO 11254: an international standard for the determination of the laser-induced damage threshold. SPIE 2214, 703713.
Blaschke, H., Ristau, D., Welsch, E. & Apel, O. (2001). Absolute measurements of nonlinear absorption near LIDT at 193 nm. Laser-Induced Damage Opt. Mater. 4347, 447453.
Chang-Tao, H.E., Zi, M.A., Chen, J.G. & Xiao, Q. (2007). The method of judging film damage based on image similarity. Laser J. 28(1), 6061.
Cheng, X., Tuniyazi, A., Wei, Z., Zhang, J., Ding, T., Jiao, H., Ma, B., Li, H., Li, T. & Wang, Z. (2015). Physical insight toward electric field enhancement at nodular defects in optical coatings. Opt. Express 23(7), 86098619.
During, A., Fossati, C. & Commandré, M. (2004). Photothermal deflection microscopy for imaging sub-micronic defects in optical materials. Opt. Commun. 230(4–6), 279286.
Gallais, L., Mangote, B., Zerrad, M., Commandré, M., Melninkaitis, A., Mirauskas, J., Sirutkaitis, V. (2011). Laser-induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range. Appl. Opt. 50(9), 178187.
Han, J.H., Duan, T., Gao, X.H., Feng, G.Y., Fan, W.X., Yang, L.M. & Bao, L.D. (2012). The influence of laser plasma effects on the characteristics of thin film damage. Spectrosc. Spectr. Anal. 32(5), 11621165.
Jena, S., Tokas, R.B., Kamble, N.M., Thakur, S. & Sahoo, N.K. (2014). Optical properties and laser damage threshold of HfO2–SiO2 mixed composite thin films. Appl. Opt. 53(5), 850860.
Junhong, S., Kunkun, W. & Haifeng, L. (2014). Acoustic detection method of optical thin film damage based on frequency characteristics. High Power Laser Part. Beams 26(7), 071004.
Junhong, S., Ning, L. & Jinman, G. (2016). On plasma shock wave of films damage by laser induced. Chin. J. Laser 43(12), 1203003.
Kai, S. & Ristau, D. (2001). Laser-induced damage investigation in chirped mirrors for ultrashort-pulse laser systems. Proc. SPIE – Int. Soc. Opt. Eng. 4347, 528534.
Lameche, N., Bouzid, S., Hamici, M., Boudissa, M., Messaci, S. & Yahiaoui, K. (2016). Effect of indium doping on the optical properties and laser damage resistance of ZnO thin films. Optik – Int. J. Light Electr. Opt. 127(20), 96639672.
Lian-yu, Z., Ling-yu, W. & Rui-sheng, M. (1986). Explosive Gasdynamics. Beijing: Industry Publishing House.
Liu, Z., Zheng, Y., Pan, F., Lin, Q., Ma, P. & Wang, J. (2016). Investigation of laser induced damage threshold measurement with single-shot on thin films. Appl. Surf. Sci. 382, 294301.
Lu, J.T., Cheng, X.B., Shen, Z.X., Jiao, H.F., Zhang, J.L., Ma, B. & Wang, X.D. (2011). Volume and interface absorptions of single layer. Acta Phys. Sin. – Chin. Ed.- 60(4), 47802047802.
Mangote, B., Gallais, L., Zerrad, M., Lemarchand, F., Gao, L.H., Commandre, M. & Lequime, M. (2012). A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films. Rev. Sci. Instrum. 83(1), 121129.
Meister, S., Riesbeck, T. & Eichler, H.J. (2007). Glass fibers for stimulated Brillouin scattering and phase conjugation. Laser Part. Beams 25(1), 1521.
Neauport, J., Cormont, P., Legros, P., Ambard, C. & Destribats, J. (2009). Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy. Opt. Express 17(5), 35433554.
Ni, X.W., Lu, J., He, A., Ma, Z. & Zhou, J.L. (1991). New definition of laser damage threshold of thin film. Proc. SPIE – Int. Soc. Opt. Eng. 1527, 437441.
Ni, X.W., Chen, J.P., Shen, Z.H. & Lu, J.A. (1998). Study of the attenuation of laser-induced plasma shock wave. Int. J. Optoelectron. 12(2), 3739.
Shenjiang, W. (2016). Laser-induced diamond-like carbon film under different electric field directions. Laser Part. Beams 1, 16.
Su, J., Liang, H. & Xu, J. (2010). Evaluation criteria of laser-induced damage threshold based on light scattering. Chin. J. Vac. Sci. Technol. 30(3), 325328.
Su, J., Zhao, D. & Xu, J. (2012). Research of spectrum peak value to determine the optical film damage. ACTA Opt. Sin. 32, 131005.
Su, J., Xu, J., Yang, C. & Cheng, Y. (2015). Influence of deposition temperature on optical and laser-induced damage properties of LaTiO3 films. Surf. Rev. Lett. 22(6): 1550070-1–1550070-8.
Wagner, F.R., Gouldieff, C., Natoli, J.Y. & Commandré, M. (2015). Nanosecond multi-pulse laser-induced damage mechanisms in pure and mixed oxide thin films. Thin Solid Films 592, 225231.
Wan-jun, A. & Sheng-ming, X. (2012). Characteristics of single layer HfO2 thin films. Optoelectron. Eng. 39(2), 134140.
Xu, J., Su, J., Hang, L., & Cheng, Y. (2013). Influence of electric field on laser damage properties of DLC films by unbalanced magnetron sputtering. Appl. Surf. Sci. 265(1), 234238.
Xu, C., Fan, H., Li, D., Qi, J., Yang, S. & Qiang, Y. (2015). Comparative studies on the laser-induced damage of TiO2 films with different additives and thickness. Optik – Int. J. Light Electron Opt. 126(24), 54785482.
Xu, M., Dai, Y., Zhou, L., Shi, F., Wan, W., Xie, X., & Sui, T. (2016). Investigation of surface characteristics evolution and laser damage performance of fused silica during ion-beam sputtering. Opt. Mater. 58, 151157.

Keywords

Related content

Powered by UNSILO

Diagnosing laser-induced damage to optical thin films using peak sound pressure of shock waves

  • G. Jinman (a1) (a2), S. Junhong (a1) (a2), W. Shenjiang (a2), X. Junqi (a2), C. Lei (a1) and L. Ning (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.