Skip to main content Accessibility help

Design and efficient operation of a coaxial RBWO

  • Y. Teng (a1), C.H. Chen (a1), H. Shao (a1), J. Sun (a1), Z.M. Song (a1), R.Z. Xiao (a1) and Z.Y. Du (a1)...


Coaxial relativistic backward wave oscillator with the rippled inner conductor not only increases the output efficiency but also results in the serious phenomenon of pulse shortening in experiments. Our research indicates that the two main mechanisms leading to the pulse shortening are the electron beam interruption and combining effects of the explosive field electron emission and the secondary electron multipactor on the surface of the slow-wave structure. In order to enhance its power capacity the electrodynamic structure is modified by detailed analysis of the field distribution in the coaxial slow-wave structure. The appropriate resonant reflector and the electron collector are developed for the application of the coaxial relativistic backward wave oscillator. A series of surface treatment is applied to enhance the power capacity of the coaxial RBWO. In the experiment, the microwave pulse duration is increased from less than 10 ns to 20 ns, and the output efficiency is enhanced from less than 20% to 34% employing the electron beam pulse of the full width at half maximum 28 ns. The peak power of 1.01 GW at the frequency of 7.4 GHz is achieved. It is found that the output efficiency of the coaxial RBWO is likely to be advanced if its power capacity can be boosted further.


Corresponding author

Address correspondence and reprint requests to: Y. Teng, Northwest Institute of Nuclear Technology, Xi'an, Shaanxi, People's Republic of China. E-mail:


Hide All
Agee, F.J. (1998). Evolution of pulse shortening research in narrow band, high power microwave sources. IEEE Trans. Plasma Sci. 26, 235245.
Benford, J. & Benford, G. (1997). Survey of pulse shortening in high-power microwave sources. IEEE Trans. Plasma Sci. 25, 311317.
Benford, J., Swegle, J. & Schamiloglu, E. (2006). BWOs, MWCGs, and O-Type Cerenkov Devices. In High Power Microwaves (Benford, J., Swegle, J. & Schamiloglu, E, Eds.), pp. 321370. New York: Taylor & Francis.
Chang, C., Liu, G.Z., Fang, J.Y., Tang, C.X., Huang, H.J., Chen, C.H. & Zhang, Q.Y. (2010). Field distribution, HPM multipactor, and plasma discharge on the periodic triangular surface. Laser Part. Beams 28, 185193.
Eltchaninov, A.A., Korovin, S.D., Rostov, V.V., Pegel, I. V., Mesyats, G.A., Rukin, S.N., Shpak, V.G., Yalandin, M.I. & Ginzburg, N.S. (2003). Production of short microwave pulses with a peak power exceeding the driving electron beam power. Laser Part. Beams 21, 187196.
Ge, X.J., Zhong, H.H., Qian, B.L., Zhang, J., Fan, Y.W., Shu, T. & Liu, J.L. (2009). Dispersive characteristics and longitudinal resonance properties in a relativistic backward wave oscillator with the coaxial arbitrary-profile slow-wave structure. Phys. Plasmas 16: 113104.
Gilgenbach, R.M., Hochman, J.M., Jaynes, R.L., Cohen, W.E., Rintamaki, J.I., Peters, C.W., Vollers, D.E., Lau, Y.Y. & Spencer, T.A. (1998). Optical spectroscopy of plasma in high power microwave pulse shortening experiments driven by a μs e-Beam. IEEE Trans. Plasma Sci. 26, 282289.
Goebel, D.M. (1998). Pulse shortening causes in high power BWO and TWT microwave sources. IEEE Trans. Plasma Sci. 26, 263274.
Gunin, A.V., Klimov, A.I., Korovin, S.D., Kurkan, I.K., Pegel, I.V., Polevin, S.D., Roitman, A.M., Rostov, V.V., Stepchenko, A.S. & Totmeninov, E.M. (1998 a). Relativistic X-band BWO with 3-GW output power. IEEE Trans. on Plasma Sci. 26, 326331.
Gunin, A.V., Korovin, S.D., Kurkan, I.K., Pegel, I.V., Rostov, V.V. & Totmeninov, E.M. (1998 b). Relativistic BWO with electron beam pre-modulation. Proc. 12th International conf. on High-power Particle Beams. Haifa, Israel, 11, 849852.
Jin, Z.X., Zhang, J., Yang, J.H., Zhong, H.H., Qian, B.L., Shu, T., Zhang, J.D., Zhou, S.Y. & Xu, L.R. (2011). A repetitive S-band long-pulse relativistic backward-wave oscillator. Rev. Sci. Instrum. 82, 084704.
Korovin, S. (1999). Increasing microwave output power pulse length in a 3 GW backward wave oscillator using low-energy electron beam-treated slow-wave structure rings. Report No. 0704-0188. Russia, Tomsk: Institute of High Current Electronics.
Korovin, S.D., Mesyats, G.A., Pegel, I.V., Polevin, S.D. & Tarakanov, V.P. (2000). Pulse width limitation in the relativistic backward wave oscillator. IEEE Trans. Plasma Sci. 28, 485495.
Korovin, S.D., Kurkan, I.K., Loginov, S.V., Pegel, I.V., Polevin, S.D., Volkov, S.N. & Zherlitsyn, A.A. (2003). Decimetr-band frequency-tunable sources of high-power microwave pulses. Laser Part. Beams 21, 175185.
Kovalchuk, B.M., Kharlou, A.V., Zherlitsyn, A.A., Kumpjak, E.V., Tsoy, N.V., Vizir, V.A. & Smorudov, G.V. (2009). 40 GW linear transformer driver stage for pulse generators of mega-ampere range. Laser Part. Beams 27, 371378.
Kovalev, N.F., Nechaev, V.E., Petelin, M.I. & Zaitsev, N.I. (1998). Scenario for output pulse shortening in microwave generators driven by relativistic electron beams. IEEE Trans. plasma Sci. 26, 246250.
Li, G.L., Yuan, C.W., Zhang, J.Y., Shu, T. & Zhang, J. (2008). A diplexer for gigawatt class high power microwave. Laser Part. Beams 26, 371377.
Li, G.L., Shu, T., Yuan, C.W., Zhu, J., Liu, J., Wang, B. & Zhang, J. (2010). Simulation operation of X band gigawatt level high power microwave. Laser Part. Beams 28, 3545.
Liu, G.Z., Chen, C.H. & Zhang, Y.L. (2001). Relativistic backward-wave oscillator with coaxial extractor. Hi. Power Laser Part. Beams 13, 467470.
Liu, G.Z. (2002). Numerical simulation research on a relativistic high power microwave device wit h coaxial slow wave structure. Proc. 5th High Power Microwave Conf. Zhuhai, Xi'an, 2–6.
Liu, G.Z., Xiao, R.Z., Chen, C.H., Shao, H., Hu, Y.M. & Wang, H.J. (2008). A Cerenkov generator with coaxial slow wave structure. J. Appl. Phys. 103, 093303.
Liu, J.L., Yin, Y., Ge, B., Zhan, T.W., Chen, X.B., Feng, J.H., Shu, T., Zhang, J.D. & Wang, X.X. (2007). An electron-beam accelerator based on spiral water PFL. Laser Part. Beams 25, 593599.
Mayberry, C.S., Wroblewski, B., Schamiloglu, E. & Fleddermann, C.B. (1994). Suppression of vacuum breakdown using thin-film coatings. J. Appl. Phys. 76, 44484451.
Min, S.H., Jung, H.C., Shin, S.H., Park, G.S., An, J.H., Lee, S.H., Yoon, Y.J., Kim, J.Y., Lee, W.S. & So, J.H. (2008). Pulse shortening by RF breakdown in relativistic backward wave oscillator. Proc. IEEE 10th Int. Vacuum Electronic Conf. Rome, Italy, 364365.
Polevin, S.D., Korovin, S.D., Kovalchuk, B.M., Karlik, K.V., Kurkan, I.K., Ozur, G.E., Pegel, I.V., Proskurovsky, D.I., Sukhov, M., Yu. & Volkov, S.N. (2004). Pulse Lengthening of S-Band Resonant Relativistic BWO. Proc. 13th International Symposium on High Current Electronics. Tomsk, Russia, 245249.
Price, D. & Benford, J.N. (1998). General scaling of pulse shortening in explosive-emission-driven microwave source. IEEE Trans. Plasma Sci. 26, 263274.
Roy, A., Menon, R., Mitra, S., Kumar, D.D.P., Kumar, S., Sharma, A., Mittal, K.C., Nagesh, K.V. & Chakravarthy, D.P. (2008). Impedance collapse and beam generation in a high power planar diode. J. Appl. Phys. 104, 014904.
Schamiloglu, E. (1999). Upgrade of a long pulse, high power backward wave oscillator to ultraclean vacuum conditions. Report No. F49620-97-1-0102. Albuquerque, NM: University of New Mexico (UNM), Department of Electrical and Computer Engineering Pulsed Power and Plasma Science Laboratory.
Swegle, J.A. & Benford, J.N. (1998). High-power microwaves at 25 years: the current state of development. Proc. 12th International conf. on High-power Particle Beams. Haifa, Israel, 1, 149–152.
Teng, Y., Liu, G.Z., Shao, H. & Tang, C.X. (2008). A new reflector designed for efficiency enhancement of CRBWO. IEEE Trans. Plasma Sci. 6, 10621068.
Teng, Y., Tang, C.X., Liu, G.Z., Chen, C.H. & Shao, H. (2009). Growth rate of the coaxial slow wave structure. Proc. IEEE 10th Int. Vacuum Electronic Conf. Rome, Italy, 226–227.
Teng, Y., Xiao, R.Z., Liu, G.Z., Tang, C.X., Chen, C.H. & Shao, H. (2010). Starting current of coaxial relative backward wave oscillator. Phys. Plasmas 17, 063108.
Teng, Y., Xiao, R.Z., Song, Z.M., Sun, J., Chen, C.H. & Shao., H. (2011). Efficiency Enhancement of RBWO by introduction of coaxial rippled inner conductor. Proc. 25th Asia-Pacific Microwave Conf. Melbourne, Australia, 215–218.
Teng, Y., Xaio, R.Z., Song, Z.M., Sun, J., Chen, C.H., Shao, H. & Liu, G.Z. (2012). Research on wave-beam interaction in coaxial relativistic backward wave oscillator. Hi. Power Laser Part. Beams 24, 175180.
Voronkov, S.N., Loza, O.T. & Strelkov, P.S. (1991). Limits on the length of radiation pulses generated by microwave oscillators using microsecond relativistic beams. Sov. J. Plasma Phys. 17, 439442.
Xiao, R.Z., Teng, Y., Chen, C.H. & Sun, J. (2011). High efficiency coaxial klystron-like relativistic backward wave oscillator with a premodulation cavity. Phys. Plasmas. 18, 113102.
Zhang, J., Jin, Z.X., Yang, J.H., Zhong, H.H., Shu, T., Zhang, J.D., Yuan, C.W., Li, Z. Q., Fan, Y.W., Zhou, S.Y. & Xu., L.R. (2010). Recent Advance in long-pulse HPM sources with repetitive operation in S, C and X-band. Proc 3rd Euro-Asian Conf. on Pulsed Power and 18th Int. Conf. on High-power Particle Beams. Jeju, Korea, 148–157.


Design and efficient operation of a coaxial RBWO

  • Y. Teng (a1), C.H. Chen (a1), H. Shao (a1), J. Sun (a1), Z.M. Song (a1), R.Z. Xiao (a1) and Z.Y. Du (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed