Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T04:51:44.166Z Has data issue: false hasContentIssue false

Cyclotron resonance effects on electron acceleration by two lasers of different wavelengths

Published online by Cambridge University Press:  17 April 2012

D.N. Gupta*
Affiliation:
Department of Physics and Astrophysics, University of Delhi, Delhi, India
K.P. Singh
Affiliation:
School of Physics, University of Sydney, New South Wales, Australia
H. Suk
Affiliation:
Advanced Photonics Research Institute and Graduate Program of Photonics and Applied Physics, Gwangju Institute of Science and Technology, Gwangju, Korea
*
Address correspondence and reprint requests to: D. N. Gupta, Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India. E-mail: dngupta@physics.du.ac.in

Abstract

Cyclotron resonance effects on electron acceleration by two lasers of different wavelengths in the presence of a magnetic field have been investigated. Beating of two high-intensity lasers of different wavelengths, propagating in opposite direction to each other, can produce a high accelerating field gradient. An electron can be accelerated by such accelerating field to a sufficiently higher energy level. Additional energy gain has been observed due to the applied magnetic field. The magnetic field turns down the electrons to the acceleration region to extract more energy from the accelerating field produced by the beating of the lasers. At resonance, when the Larmor frequency is comparable to the laser frequency, this effect becomes more pronounced. Using some reasonable experimental parameters, we estimate the electron energy gain for this mechanism.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cheng, Y. & Xu, Z. (1999). Vacuum laser acceleration by an ultrashort, high-intensity laser pulse with a sharp rising edge. Appl. Phys. Lett. 74, 21162118.CrossRefGoogle Scholar
Cicchitelli, L., Hora, H. & Postle, R. (1990). Longitudinal field components for laser beams in vacuum. Phys. Rev. A 41, 37273732.CrossRefGoogle ScholarPubMed
Esarey, E., Sprangle, P. & Krall, P. (1995). Laser acceleration of electrons in vacuum. Phys. Rev. E 52, 54435453.CrossRefGoogle ScholarPubMed
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252288.CrossRefGoogle Scholar
Evans, R.G. (1988). The light that never was. Nat. 333, 296297.CrossRefGoogle Scholar
Gibbon, P. (2005). Short Pulse Laser Interaction with Matter-An Introduction. London: Imperial College Press.Google Scholar
Giulietti, D., Galimberti, M., Giulietti, A., Gizzi, L.A., Labate, L. & Tomassini, P. (2005). The laser-matter interaction meets the high energy physics: Laser-plasma accelerators and bright x/gamma-ray sources. Laser Part. Beams 23, 309314.CrossRefGoogle Scholar
Glinec, Y., Faure, J., Pukhov, A., Kiselev, S., Gordienko, S., Mercier, B. & Malka, V. (2005). Generation of quasimonoenergetic electron beams using ultrashort and ultraintense laser pulses. Laser Part. Beams 23, 161166.CrossRefGoogle Scholar
Gupta, D.N. & Ryu, C.M. (2005). Electron acceleration by a circularly polarized laser pulse in the presence of an obliquely incident magnetic field in vacuum. Phys. Plasmas 12, 053103053108.CrossRefGoogle Scholar
Gupta, D.N. & Suk, H. (2006 a). Combined role of frequency variation and magnetic field on laser electron acceleration. Phys. Plasmas 13, 013105013110.CrossRefGoogle Scholar
Gupta, D.N. & Suk, H. (2006 b). Frequency chirping for resonance enhanced electron energy during laser acceleration. Phys. Plasmas 13, 044507044508.CrossRefGoogle Scholar
Gupta, D.N., Hur, M.S. & Suk, H. (2007 a). Comment on “Electron acceleration by a chirped Gaussian laser pulse in vacuum.” Phys. Plasmas 14, 44701.CrossRefGoogle Scholar
Gupta, D.N. & Suk, H. (2007 b). Electron acceleration to high energy by using two chirped lasers. Laser and Part. Beams 25, 3136.CrossRefGoogle Scholar
Gupta, D.N., Kumar, S., Hur, M.S. & Suk, H. (2007 c). Electron acceleration by a short laser beam in the presence of a long-wavelength electromagnetic wave. J. Appl. Phys. 102, 056106.CrossRefGoogle Scholar
Gupta, D.N., Jang, H.J. & Suk, H. (2009). Combined effect of tight-focusing and frequency-chirping on laser acceleration of an electron in vacuum. J. Appl. Phys. 105, 106110.CrossRefGoogle Scholar
Hartemann, F.V., Van-Meter, J.R., Troha, A.L., Landahl, E.C., Luhmann, N.C., Baldis, H.A. Jr., Gupta, A. & Kerman, A.K. (1998). Three-dimensional relativistic electron scattering in an ultrahigh-intensity laser focus. Phys. Rev. E 58, 50015012.CrossRefGoogle Scholar
Hauser, T., Scheid, W. & Hora, H. (1994). Acceleration of electrons by intense laser pulses in vacuum. Phys. Lett. A 186, 189192.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Rosmej, O.N., Spiller, P., Tahir, N.A., Weyrich, K., Dafni, T., Kuster, M., Ni, P., Roth, M., Udrea, S. & Varentsov, D. (2007). Particle accelerator physics and technology for high energy density physics research. Euro. Phys. J: D 44, 293300.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosemej, P., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Hora, H. (1988). Particle acceleration by superposition of frequency-controlled laser pulses. Nat. 333, 337338.CrossRefGoogle Scholar
Hora, H., Hoelss, M., Scheid, W., Wang, J.W., Ho, Y.K., Osman, F. & Castillo, R. (2000). Principle of high accuracy for the nonlinear theory of the acceleration of electrons in a vacuum by lasers at relativistic intensities. Laser Part. Beams 18, 135144.CrossRefGoogle Scholar
Karmakar, A. & Pukhov, A. (2007). Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses. Laser Part. Beams 25, 371377.CrossRefGoogle Scholar
Kawata, S., Kong, Q., Miyazaki, S., Miyauchi, K., Sonobe, R., Sakai, K., Nakajima, K., Masuda, S., Ho, Y.K., Miyanaga, N., Limpouch, J. & Andreev, A.A. (2005). Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser. Laser Part. Beams 23, 6167.CrossRefGoogle Scholar
Kitagawa, Y., Sentoku, Y., Akamatsu, S., Sakamoto, W., Kodama, R., Tanaka, K.A., Azumi, K., Norimatsu, T., Matsuoka, T., Fujita, H. & Yoshida, H. (2004). Electron acceleration in an ultraintense-laser-illuminated capillary. Phys. Rev. Lett. 92, 205002.CrossRefGoogle Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser-plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Liu, H., He, X.T. & Hora, H. (2006). Additional acceleration and collimation of relativistic electron beams by magnetic field resonance at very high-intensity laser interaction. Appl. Phys. B 82, 9397.CrossRefGoogle Scholar
Malka, G., Lefebvre, E. & Miquel, J.L. (1997). Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser. Phys. Rev. Lett. 78, 33143317.CrossRefGoogle Scholar
Modena, A., Najmudin, Z., Dangor, A.E., Clayton, C.E., Marsh, K.A., Joshi, C., Malka, V., Darrow, C.B., Danson, C., Neely, D. & Walsh, F.N. (1995). Electron acceleration from the breaking of relativistic plasma waves. Nat. 377, 606608.CrossRefGoogle Scholar
Mora, P. & Quesnel, B. (1998). Comment on “Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser.” Phys. Rev. Lett. 80, 13511354.CrossRefGoogle Scholar
Maher, W.E. & Hall, R.B. (1976). Experimental study of effects from two laser pulses. J. Appl. Phys. 47, 24862493.CrossRefGoogle Scholar
Niu, H.Y., He, X.T., Qiao, B. & Zhou, C.T. (2008). Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses. Laser Part. Beams 26, 5159.CrossRefGoogle Scholar
Nishida, Y. (2009). Elecctron linear accelerator based on cross field acceleration principle. Laser Part. Beams 7, 561579.CrossRefGoogle Scholar
Roth, M., Brambrink, E., Audebert, P., Blazevic, A., Clarke, R., Cobble, J., Cowan, T.E., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electrons transport in ultraintense laser matter interaction. Laser Part. Beams 23, 95100.CrossRefGoogle Scholar
Salamin, Y.I. & Keitel, C.H. (2000). Subcycle high electron acceleration by crossed laser beams. Appl. Phys. Lett. 77, 10821084.CrossRefGoogle Scholar
Salamin, Y.I. (2006). Electron acceleration from rest in vacuum by an axicon Gaussian laser beam. Phys. Rev. A 73, 043402.CrossRefGoogle Scholar
Singh, K.P. (2005). Electron acceleration by a chirped short intense laser pulse in vacuum. Appl. Phys. Lett. 87, 254102.CrossRefGoogle Scholar
Singh, K.P., Sajal, V. & Gupta, D.N. (2008). Quasi-monoenergetic GeV electrons from the interaction of two laser pulses with a gas. Laser Part. Beams 26, 597604.CrossRefGoogle Scholar
Singh, K.P, Gupta, D.N. & Sajal, V. (2009). Electron energy enhancement by a circularly polarized laser pulse in vacuum. Laser Part. Beams 27, 635642.CrossRefGoogle Scholar
Sprangle, P., Esarey, E. & Krall, J. (1996). Laser driven electron acceleration in vacuum, gases, and plasmas. Phys. Plasmas 3, 21832190.CrossRefGoogle Scholar
Smorenburg, P.W., Kamp, L.P.J., Geloni, G.A. & Luiten, O.J. (2010). Coherent enhanced radiation reaction effects in laser-vacuum acceleration of electron bunch. Laser Part. Beams 28, 553562.CrossRefGoogle Scholar
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 56, 219221.CrossRefGoogle Scholar
Umstadter, D. (2001). Review of physics and applications of relativistic plasmas driven by ultra-intense lasers. Phys. Plasmas 8, 17741785.CrossRefGoogle Scholar
Umstadter, D. (2003). Relativistic laser-plasma interactions. J. Phys. D: Appl. Phys. 36, R151R165.CrossRefGoogle Scholar
Xu, J.J., Kong, Q., Chen, Z., Wang, P.X., Wang, W., Lin, D. & Ho, Y.K. (2007a). Vacuum laser acceleration in circularly polarized fields. J. Phys. D: Appl. Phys 40, 24642471.CrossRefGoogle Scholar
Xu, J.J., Kong, Q., Chen, Z., Wang, P.X., Wang, W., Lin, D. & Ho, Y.K. (2007b). Polarization effect of fields on vacuum laser acceleration. Laser Part. Beams 25, 253257.CrossRefGoogle Scholar
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin target: the laser break-out afterburner. Laser Part. Beams 24, 291298.CrossRefGoogle Scholar