Skip to main content Accessibility help

Comparison of fast ions production modes by short laser pulses

  • C. STRANGIO (a1) and A. CARUSO (a1)


Irradiation of solid targets by short laser pulses can result in a production of fast ions. In this paper, two production modes are discussed: the controlled amount of matter mode (CAM) and the open amount of matter mode (OAM). The CAM mode is based on laser energy transfer to a controlled amount of matter before the target becomes transparent to the laser light due to the gas-dynamical expansion. For the CAM mode, it is presented a model that allows determining the target parameters, the focusing conditions, and the pulse duration as a function of the laser pulse energy, of the aimed energy per nucleon and of the energy transfer efficiency to the target. The conditions to be this mode experimentally addressed are indicated. The OAM mode relies on the irradiation of a target with large ion content by a short laser pulse; in this case, a small amount of fast ions is emitted from the rear and lateral sides of the target depending on the laser pulse and focusing parameters. For this mode, observed in several experiments, a theoretical discussion is presented. Special attention is devoted to the target normal sheath acceleration (TNSA) and to expansion wave (EW) mechanisms. The EW process is discussed in the framework of a two-temperature isothermal model and some peculiar hydrodynamic processes are discussed.


Corresponding author

Address correspondence and reprint requests to C. Strangio, Associazione ENEA-EURATOM sulla Fusione, C. R. ENEA Frascati, Via E. Fermi 45, 00044 Frascati (RM), Italy. E-mail:


Hide All


Allen, J.E. & Andrews, J.G. (1970). A note on ion rarefaction waves. J. Plasma Physics 4, 187194.
Allen, M., Sentoku, Y., Audebert, P., Blazevic, A., Cowan, T., Fuchs, J., Gauthier, J.C., Geissel, M., Hegelich, M., Karsch, S., Morse, E., Patel, P.K. & Roth, M. (2003). Proton spectra from ultraintense laser-plasma interaction with thin foils: Experiments, theory, and simulation. Phys. Plasmas 10, 32833289.
Bezzerides, B., Forslund, D.W. & Lindman, E.L. (1978). Existence of rarefaction shocks in a laser-plasma corona. Phys. Fluids 21, 21792185.
Borghesi, M., Campbell, D.H., Schiavi, A., Willi, O., Mackinnon, A.J., Hicks, D., Patel, P., Gizzi, L.A., Galimberti, M. & Clarke, R.J. (2002). Laser-produced protons and their application as a particle probe. Laser Part. Beams 20, 269275.
Caruso, A., De Angelis, A., Gatti, G., Gratton, R. & Martellucci, S. (1970). Energetic ions produced by subnanosecond laser pulses. Phys. Lett. 33A, 336337.
Caruso, A. & Gratton, R. (1971). On the possibility of producing 0.1 GeV ions by focusing ultrashort laser pulses on thin foils. Phys. Lett. 36A, 275276.
Caruso, A. & Strangio, C. (2001). Studies on nonconventional high-gain target design for ICF. Laser Part. Beams 19, 295308.
Clark, E.L., Krushelnick, K., Zepf, M., Beg, F.N., Tatarakis, M., Machacek, A., Santala, M.I.K., Watts, I., Norreys, P.A. & Dangor, A.E. (2000). Energetic heavy-ion and proton generation from ultraintense laser-plasma interactions with solids. Phys. Rev. Lett. 85, 16541657.
Cox, J.P. & Giuli, R.T. (1968). Principles of Stellar Structure. New York: Gordon and Breach.
Denavit, J. (1979). Collisionless plasma expansion into a vacuum. Phys. Fluids 22, 13841382.
Gitomer, S.J., Jones, R.D., Begav, F., Ehler, A.W., Kephart, J.F. & Kristal, R. (1986). Fast ions and hot electrons in the laser-plasma interaction. Phys. Fluids 29, 26792688.
Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C., &Yasuike, K. (2000). Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7, 20762081.
Hegelich, M., Karsch, S., Pretzler, G., Habs, D., Witte, K., Guenther, W., Allen, M., Blazevic, A., Fuchs, J., Gauthier, J.C., Geissel, M., Audebert, P., Cowan, T. & Roth, M. (2002). MeV ion jets from short-pulse-laser interaction with thin foils. Phys. Rev. Lett. 89, 085002.
Landau, L.D. & Lifshitz, E.M. (1959). Fluid Mechanics. London/New York/Paris/Los Angeles: Publishers.
Matsukado, K., Esirkepov, T., Kinoshita, K., Daido, H., Utsumi, T., Li, Z., Fukumi, A., Hayashi, Y., Orimo, S., Nishiuchi, M., Bulanov, S.V., Tajima, T., Noda, A., Iwashita, Y., Shirai, T., Takeuchi, T., Nakamura, S., Yamazaki, A., Ikegami, M., Mihara, T., Morita, A., Uesaka, M., Yoshii, K., Watanabe, T., Hosokai, T., Zhidkov, A., Ogata, A., Wada, Y. & Kubota, T. (2003). Energetic protons from a few-micron metallic foil evaporated by an intense laser pulse. Phys. Rev. Lett. 91, 215001.
Pearlman, J.S. & Morse, R.L. (1978). Maximum expansion velocities of laser-produced plasmas. Phys. Rev. Lett. 40, 16521655.
Roth, M., Blazevic, A., Geissel, M., Schlegel, T., Cowan, T.E., Allen, M., Gauthier, J.C., Audebert, P., Fuchs, J., Meyer-Ter-Vehn, J., Hegelich, M., Karsch, S. & Pukhov, A. (2002). Energetic ions generated by laser pulses: A detailed study on target properties. Phys. Rev. 5, 061301.
Strangio, C., Andreoli, P.L., Cristofari, G., Dattola, A. & Di Giorgio, G. (2004). A study for target modification induced by the prepulse in petawatt-class light-matter interaction experiments. 28th ECLIM Proceedings.
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., Mackinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542549.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed