Skip to main content Accessibility help

A comparative study of Cu–Ni Alloy using LIBS, LA-TOF, EDX, and XRF

  • N. Ahmed (a1) (a2), R. Ahmed (a1), M. Rafiqe (a2) and M.A. Baig (a1)


LASER induced breakdown spectroscopy (LIBS) has been used for the quantitative analysis of Cu–Ni alloy of known composition (75% Cu, 25% Ni) using the one line calibration free-LIBS (OLCF-LIBS), self-calibration-LIBS (SC-LIBS), calibration free LIBS (CF-LIBS), time of flight-mass spectroscopy (TOF-MS), energy dispersive X-ray spectroscopy (EDX) and X-ray fluorescence spectroscopy (XRF). For the LIBS-based studies, the plasma was generated by focusing the beam of a Q-switched Nd:YAG laser (532 nm, pulse energy about 200 mJ, 5 ns pulse duration) while the sample was placed in air at an atmospheric pressure. Plasma temperature about (9500 ± 300) K was calculated by the Boltzmann plot method using the neutral lines of Cu and Ni whereas the electron number density was calculated (2.0 ± 0.5) × 1016 cm−3 from the Stark broadening of an isolated Cu line as well as using the relative intensities of the neutral and singly ionized optically thin lines in the Saha–Boltzmann equation. The elemental compositions determined by different LIBS methods and standard techniques are; OLCF-LIBS (69% Cu and 31% Ni), SC-LIBS (72% Cu and 28% Ni), CF-LIBS (74% Cu and 26% Ni), TOF (74% Cu and 26% Ni), EDX (75% Cu and 24.5% Ni), XRF (73% Cu and 24.7% Ni), and LA-TOF (74% Cu and 26% Ni). It is demonstrated that the CF-LIBS method gives compositions comparable with that determined by LA-TOF, EDX, or XRF, which is also in agreement with the certified reported composition.


Corresponding author

Address correspondence and reprint requests to: M.A. Baig, National Centre for Physics, Quaid-i-Azam University Campus, 45320 Islamabad, Pakistan. E-mail:;


Hide All
Aguilera, J.A., Aragon, C., Cristoforetti, G. & Tognoni, E. (2009). Application of calibration-free laser-induced breakdown spectroscopy to radially resolved spectra from a copper-based alloy laser-induced plasma. Spectrochim. Acta B 64, 685689.
Ahmed, R. & Baig, M.A. (2009). A comparative study of single and double pulse laser induced breakdown spectroscopy. J. Appl. Phys. 106, 033307.
Ahmed, R. & Baig, M.A. (2015). A comparative study of enhanced emission in double pulse laser induced breakdown spectroscopy. Opt. Laser Technol. 65, 113118.
Ahmed, R., Iqbal, J. & Baig, M.A. (2015). Effects of laser wavelengths and pulse energy ratio on the emission enhancement in dual pulse LIBS. Laser Phys. Lett. 12, 066102066107.
Andrea, E.D., Pagnotta, S., Grifoni, E., Legnaioli, S., Lorenzetti, G., Palleschi, V. & Lazzerini, B. (2015). A hybrid calibration free/artificial neural networks approach to the quantitative analysis of LIBS spectra. Appl. Phys. B 118, 353360.
Andrzej, W., Palleschi, V. & Israel, S. (2006). Laser Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications. New York: Cambridge University Press.
Babina, E.M., Ilinn, G.G., Konovalova, O.A., Salakhov, M.Kh. & Sarandaev, E.V. (2003). The complete calculation of stark broadening parameters for the neutral copper atoms spectral lines of 4s 2s-4p 2p0 and 4s2 2d-4p 2p0 multiplets in the dipole approximation. Publ. Astron. 76, 163166.
Baig, M.A., Qamar, A., Fareed, M.A., Anwar-ul-Haq, M. & Ali, R. (2012). Spatial diagnostics of the laser induced lithium fluoride plasma. Phys. Plasma 19, 063304.
Bassiotis, C., Diamantopoulou, A., Giannoudakos, A., Kalantzopoulou, F.R. & Kompitsas, M. (2001). Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy. Spectrochim. Acta B 56, 671683.
Borgia, I., Burgio, L.M.F., Corsi, M., Fantoni, R., Palleschi, V., Salvetti, A., Squarcialupi, M.S. & Togoni, E. (2000). Self-calibrated quantitative elemental analysis by laser-induced plasma spectroscopy: Application to pigment analysis. J. Cult. Herrit. 1, 281286.
Bulajic, D., Cristoforetti, G., Corsi, M., Hidalgo, M., Legnaioli, S., Palleschi, V., Martins, J., McKay, J., Tozer, B., Wells, D., Wells, R., Harith, M.A., Salvetti, A., Tognoni, E., Green, S., Bates, D., Steiger, A., Fonseca, J. (2001). Diagnostics of high-temperature steel pipes in industrial environment by laser-induced breakdown spectroscopy technique. Spectrochim. Acta B 57, 11811192.
Burakov, V.S. & Raikov, S.N. (2007). Quantitative analysis of alloys and glasses by a calibration-free method using laser-induced breakdown spectroscopy. Spectrochim. Acta B 62, 217223.
Charfi, B. & Harith, M.A. (2002). Panoramic laser-induced breakdown spectrometry of water. Spectrochim. Acta B 54, 11411153.
Ciucci, A., Corsi, M., Palleschi, V., Rastelli, S., Salvetti, A. & Tognoni, E. (1999). New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Appl. Spectrosc. 53, 960964.
Cremers, D.A. & Radziemski, L.J. (2006). Handbook of Laser-Induced Breakdown Spectroscopy, Handbook of Laser-Induced Breakdown Spectroscopy. New York: Wiley.
Cristoforetti, G., Giacomo, A.D., Dell'Aglio, M., Legnaioli, S., Togoni, E., Palleschi, V. & Omenetto, N. (2010). Local thermodynamic equilibrium in laser induced breakdown spectroscopy: Beyond the Mcwhirter criterion. Spectrochim. Acta B 65, 8695.
De Giacomo, A., Dell'Aglio, M., De Pascale, O., Gaudiuso, R., Teghil, R., Santagata, A. & Parisi, G.P. (2007 a). ns- and fs-LIBS of copper-based-alloys: A different approach. Appl. Surf. Sci. 253, 76777681.
De Giacomo, A., Dell'Aglio, M., De Pascale, O., Longo, S. & Capitelli, M. (2007 b). Laser induced breakdown spectroscopy on meteorites. Spectrochim. Acta B 62, 16061611.
El Sherbini, A.M. & Saad Al Aamer, A.A. (2012). Measurement of plasma parameters in laser-induced breakdown spectroscopy using Si-lines. World J. Nano Sci. Eng. 2, 206212.
Fichet, P., Menut, D., Brennetot, R., Vors, E. & Rivoallan, A. (2003). Analysis by laser-induced breakdown spectroscopy of complex solids, liquids, and powders with an Echelle spectrometer. Appl. Spectrosc. 42, 60296035.
Galbacs, G., Gornushkin, I.B., Smith, B.W. & Winefordner, J.D. (2001). Semi-quantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation. Spectrochim. Acta B 56, 11591173.
Gomba, J.M., Angelo, C.D. & Bertuccelli, D. (2001). Spectroscopic characterization of laser induced breakdown in aluminum lithium alloy samples for quantitative determination of traces. Spectrochim. Acta B 56, 695705.
Gupta, G.P., Suri, B.M., Verma, A., Sunderaraman, M., Unnikrishnan, V.K., Alti, K., Kartha, V.B. & Santhosh, C. (2011). Quantitative elemental analysis of nickel alloys using calibration-based laser-induced breakdown spectroscopy. J. Alloys Compd. 509, 37403745.
Hafeez, S., Sheikh, N.M. & Baig, M.A. (2008). Spectroscopic studies of Ca plasma generated by the fundamental, second, and third harmonics of a Nd:YAG laser. Laser Part. Beams 26, 4150.
Hahn, D.W. & Omenetto, N. (2012). Laser-induced breakdown spectroscopy (LIBS), Part II: Review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc. 66, 347419.
Harilal, S.S., Shay, B.O. & Tillah, M.S. (2005). Spectroscopic characterization of laser-induced tin plasma. J. Appl. Phys. 98, 01330610133067.
Hohreiter, V. & Hahn, D.W. (2005). Calibration effects for laser-induced breakdown spectroscopy of gaseous sample streams. Anal. Chem. 77, 11181124.
Joseph, M.R., Xu, N. & Majidi, V. (1994). Time resolved emission characteristics and temperature profiles of laser induced plasmas in helium. Spectrochim. Acta B 49, 89103.
Konjevic, R. & Konjević, N. (1986). Stark broadening and shift of neutral copper spectral lines. Fizica 18, 327.
Mohamed, W.T.Y. (2007). Calibration free laser-induced breakdown spectroscopy (LIBS) identification of seawater salinity. Opt. Appl. 37, 12.
NIST. Atomic Spectra Database.
Noll, R., Begemann, C.F., Brunk, M., Connemann, S., Meinhardt, C., Scharun, M., Sturm, V., Makowe, J. & Gehlen, C. (2014). Laser-induced breakdown spectroscopy expands into industrial applications. Spectrochim. Acta B 93, 4151.
Noll, R., Bette, H., Brysch, A., Kraushaar, M., Monch, I., Peter, L. & Sturm, V. (2001). Laser-induced breakdown spectrometry applications for production control and quality assurance in the steel industry. Spectrochim. Acta B 56, 637649.
Shaikh, N.M., Kalhoro, M.S., Hussain, A., Baig, M.A. (2013). Spectroscopic study of a lead plasma produced by the 1064 nm, 532 nm and 355 nm of a Nd:YAG laser. Spectrochim. Acta B 88, 198202.
Singh, V.K. & Rai, A.K. (2001). Prospects for laser-induced breakdown spectroscopy for biomedical applications. Lasers Med. Sci. 26, 673687.
Tognoni, E., Cristoforetti, G., Legnaioli, S. & Palleschi, V. (2010). Calibration-free laser-induced breakdown spectroscopy: State of the art. Spectrochim. Acta B 65, 114.
Tognoni, E., Cristoforetti, G., Legnaioli, S., Palleschi, V., Salvetti, A., Mueller, M., Panne, U. & Gornushkin, I. (2007). A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma. Spectrochim. Acta B 62, 12871302.
Unnikrishnan, V.K., Alti, K., Kartha, V.B., Santhosh, C., Gupta, G.P. & Suri, B.M. (2010). Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions. Indian Acad. Sci. 24, 983993.
Unnikrishnan, V.K., Mridul, K., Nayak, R., Alti, K., Kartha, V.B., Santhosh, C. & Gupta, G.P. (2012). Calibration-free laser-induced breakdown spectroscopy for quantitative elemental analysis of materials. Pramana – J. Phys. 79, 299310.
Winefordner, J.D., Gornushkin, I.B., Correll, T., Gibb, E., Smith, B.W. & Omenetto, N. (2004). Comparing several atomic spectrometric methods. J. Anal. At. Spectrom. 19, 10611083.


A comparative study of Cu–Ni Alloy using LIBS, LA-TOF, EDX, and XRF

  • N. Ahmed (a1) (a2), R. Ahmed (a1), M. Rafiqe (a2) and M.A. Baig (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed