Skip to main content Accessibility help

Coaxial propagation of Laguerre–Gaussian (LG) and Gaussian beams in a plasma

  • Shikha Misra (a1), Sanjay K. Mishra (a2) and P. Brijesh (a3) (a4)


This paper investigates the non-linear coaxial (or coupled mode) propagation of Laguerre–Gaussian (LG) (in particular L01 mode) and Gaussian electromagnetic (em) beams in a homogeneous plasma characterized by ponderomotive and relativistic non-linearities. The formulation is based on numerical solution of non-linear Schrödinger wave equation under Jeffreys–Wentzel–Kramers–Brillouin approximation, followed by paraxial approach applicable in the vicinity of intensity maximum of the beams. A set of coupled differential equations for spot size (beam width) and phase evolution with space corresponding to coupled mode has been derived and numerically solved to determine the propagation dynamics. Using focusing equation a critical condition describing the self-trapped (i.e., spatial soliton) mode of laser beam propagation in the plasma has been discussed; as a consequence oscillatory focusing/defocusing of the beams in coupled mode propagation have been analyzed and presented graphically. As an important outcome, significant enhancement in the intensity of LG beam is noticed when it is coupled with the Gaussian mode.


Corresponding author

Address correspondence and reprint requests to: Shikha Misra, Centre for Energy Studies (CES), Indian Institute of Technology Delhi (IITD), New Delhi, India 110016. E-mail:


Hide All
Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10, 609636.
Berge, L. (1998). Wave Collapse In Physics: Principles And Applications To Light And Plasma Waves. Phys. Rep. 303, 259370.
Brijesh, P., Kessler, T., Zuegel, D. & Meyerhofer, D. (2007). Demonstration of a horseshoe-shaped longitudinal focal profile. J. Opt Soc. Am. B 24, 10301038.
Deutsh, C., Furukaw, H., Mima, K., Murakami, M. & Nishihara, K. (1996). Interaction Physics of the Fast Ignitor Concept. Phys. Rev. Lett. 77, 24832486.
Eder, D.C., Amendt, P., Da Silva, L.B., London, R.A., Mac Gowan, B.J., Mathews, D.L., Penetrante, B.M., Rosen, M.D., Silks, S.C., Donnelly, T.D., Falcone, R.W & Strobel, G.L., (1994). Tabletop x-ray lasers. Phys. Plasmas 1, 17441752.
Ghatak, A. & Loknathan, S. (2004). Quantum Mechanics: Theory and Applications. New Delhi: Springer Science and Business Media.
Gupta, R., Rafat, M. & Sharma, R.P. (2011a). Effect of relativistic self- focusing on plasma wave excitation by a hollow Gaussian beam. J. Plasma Phys. 77, 777784.
Gupta, R., Sharma, P., Rafat, M. & Sharma, R.P. (2011b). Cross-focusing of two hollow Gaussian laser beams in plasmas. Laser Part. Beams 29, 227230.
Gurevich, A.V. (1978). Nonlinear Phenomena in the Ionosphere. Berlin: Springer.
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882886.
Hora, H. (1991). Plasmas at High Temperature and Density. Heidelberg: Springer.
Kasparian, J., Ackermann, R., Andre, Y. B., Mechain, G., Mejean, G., Prade, B., Rohwetter, P., Salmon, E., Stelmaszczkyk, K., YU, J., Mysyrowicz, A., Sauerbrey, R.Woste, L. & Wolf, J., (2008). Electric events synchronized with laser filaments in thunderclouds. Opt. Express 16, 57575763.
Khamedi, M. & Bahrampour, A.R. (2013). Analysis of twisted laser beam focusing and defocusing in plasma, Phys. Scr. 88, 035503035506.
Konar, S. & Jana, S. (2005). Nonlinear Propagation of a Mixture of TEM00 and TEM01 Modes of a Laser Beam in a Cubic Quintic Medium, Phys. Scr. 71, 198203.
Luo, Q., Xu, H.L., Hosseini, S.A., Daigle, J.F., Theberge, F., Sharifi, M. & Chin, S.L., (2006). Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy. Appl. Phys. B 82, 105109.
Misra, S. & Mishra, S.K. (2008). On focusing of a ring ripple on a Gaussian electromagnetic beam in a plasma. Phys. Plasmas 15, 0923071–8.
Misra, S. & Mishra, S.K. (2009a). Focusing of a ring ripple on a Gaussian electromagnetic beam in a magnetoplasma. J. Plasma Phys. 75, 545561.
Misra, S. & Mishra, S.K. (2009b). Focusing of dark hollow Gaussian electromagnetic beam in a plasma with relativistic ponderomotive Regime. PIER B 16, 291309.
Misra, S., Mishra, S.K., Sodha, M.S. & Tripathi, V.K. (2014). Effect of Electron-Ion Recombination on Self-focusing/ defocusing of Laser Pulse in Tunnel Ionized Plasmas. Laser Part. Beams 32, 2131.
Nasalski, W. (1995). Complex ray tracing of nonlinear propagation. Opt. Commun. 119, 218226.
Nasalski, W. (1996). Aberrationless effects of nonlinear propagation. J. Opt. Soc. Am. B 13, 17361747.
O'neil, A.T., Macvicar, I., Allen, L. & Padgett, M.J. (2002). Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88, 0536011–4.
Ren, Y., Alshershby, M., Qin, J., Hao, Z. & Lin, J. (2013). Microwave guiding in air along single femtosecond laser filament. J. Appl. Phys. 113, 094904-1-5.
Saini, N.S. & Gill, T.S. (2006). Self-focusing and self-phase modulation of an elliptic Gaussian laser beam in collisionless magnetoplasma. Laser Part. Beams 24, 447453.
Scheller, M., Mills, M.S., Miri, M.A., Cheng, W., Moloney, J.V., Kolesik, M., Polynkin, P. & Christodoulides, D.N., (2014). Externally refueled optical filaments. Nat. Photonics 8, 297301.
Sharma, A., Borhanian, J. & Kourakis, I. (2009). Electromagnetic beam profile dynamics in collisional plasmas. J. Phys. A: Math. Theor. 42, 465501.
Sharma, A., Prakash, G., Verma, M.P. & Sodha, M.S. (2003). Three regimes of intense laser propagation in plasmas, Phys. Plasmas 10, 40794084.
Sharma, A., Sodha, M.S., Misra, S. & Mishra, S.K. (2013). Thermal de-focusing of intense dark hollow Gaussian laser beams in atmosphere. Laser Part. Beams 31, 403410.
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1974). Self-Focusing of Laser Beams in Dielectrics, Semiconductors and Plasmas. Delhi: Tata-McGraw-Hill.
Sodha, M.S., Govind, & Sharma, R.P. (1979). Cross-focusing of two co-axial Gaussian electromagnetic beams in a magnetoplasma and plasma wave generation. Plasma Phys. 21, 1326.
Sodha, M.S., Mishra, S.K.& Misra, S. (2009a). Focusing of dark hollow Gaussian beams in a plasma. Laser Part. Beams 27, 5768.
Sodha, M.S., Mishra, S.K. & Misra, S. (2009b). Focusing of dark hollow Gaussian electromagnetic beam in a magnetoplasma. J. Plasma Phys. 75, 731748.
Sodha, M.S., Sharma, A. & Agarwal, S. (2008). A condition for simultaneous propagation of coaxial Gaussian electromagnetic beams in a plasma, without convergence or divergence. J. Plasma Phys. 74, 293299.
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self-focusing of laser beams in plasmas in plasmas and semiconductors. Prog. Opt. 13, 169265.
Sprangle, P. & Esarey, E. (1991). Stimulated back scattered harmonic generation from intense laser interaction with beams and plasmas. Phys. Rev. Lett. 67, 20212024.
Sprangle, P., Esarey, E., Ting, A. & Joyce, G. (1988). Laser wake-field acceleration and relativistic optical guiding. Appl. Phys. Lett. 53, 21462148.
Stibenz, G., Zhavoronkov, N. & Steinmeyer, G. (2006). Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament. Opt. Lett. 31, 274276.
Sueda, K., Miyaji, G., Miyanaga, N. & Nakatsuka, M. (2004). Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses. Opt. Express 12, 35483553.
Tabak, M., Hammer, J., Glinisky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultra-powerful lasers. Phys. Plasmas 1, 16261634.
Thakur, A. & Berakdar, J. (2010). Self-focusing and defocusing of twisted light in non-linear media. Opt. Express 18, 2769127696.
Umstadter, D., Chen, S.Y., Maksimchuk, A., Mourou, G. & Wagner, R. (1996). Nonlinear optics in relativistic plasmas and laser wake field acceleration of electrons. Science 273, 472475.
Yu, W., Yu, M.Y., Xu, H., Tian, Y.W., Chen, J. & Wong, A.Y. (2007). Intense local plasma heating by stopping of ultrashort ultraintense laser pulse in dense plasma. Laser Part. Beams 25, 631638.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed