Skip to main content Accessibility help
×
Home

Charge state of Zn projectile ions in partially ionized plasma: Simulations

  • ERAN NARDI (a1), DIMITRI V. FISHER (a1) (a2), MARKUS ROTH (a3), ABEL BLAZEVIC (a3) and DIETER H.H. HOFFMANN (a4)...

Abstract

This study deals with the simulation of the experimental study of Roth et al. (2000) on the interaction of energetic Zn projectiles in partially ionized laser produced carbon targets, and with similar type experiments. Particular attention is paid to the specific contributions of the K and L shell target electrons to electron recombination in the energetic Zn ionic projectile. The classical Bohr–Lindhard model was used for describing recombination, while quantum mechanical models were also introduced for scaling the L to K cross-section ratios. It was found that even for a hydrogen-like carbon target, the effect of the missing five bound electrons brings about an increase of only 0.6 charge units in the equilibrium charge state as compared to the cold target value of 23. A collisional radiative calculation was employed for analyzing the type of plasma produced in the experimental study. It was found that for the plasma conditions characteristic of this experiment, some fully ionized target plasma atoms should be present. However in order to explain the experimentally observed large increase in the projectile charge state a very dominant component of the fully ionized plasma must comprise the target plasma. A procedure for calculating the dynamic evolvement of the projectile charge state within partially ionized plasma is also presented and applied to the type of plasma encountered in the experiment of Roth et al. (2000). The low temperature and density tail on the back of the target brings about a decrease in the exiting charge state, while the value of the average charge state within the target is dependent on the absolute value of the cross-sections.

Copyright

Corresponding author

Address correspondence and reprint requests to: Eran Nardi, Department of Physics, Weizmann Institute of Science, Rehovoth 76100, Israel. E-mail: eran.nardi@weizmann.ac.il

References

Hide All

REFERENCES

Arad, R., Tsigutkin, K., Ralchenko, Yu.V. & Maron, Y. (2000). Spectroscopic investigations of a dielectric-surface-discharge plasma source. Phys. Plasmas 7, 3797.
Assmann, W., Huber, H., Karamian, S.A., Grüner, F., Mieskes, H.D., Andersen, J.U., Posselt, M. & Schmidt, B. (1999). Transverse cooling or heating of channeled ions by electron capture and loss. Phys. Rev. Lett. 83, 1759.
Barriga-Carrasco, M..D.. & Maynard, G. (2005). A 3D trajectory numerical simulation of the transport of energetic light ion beams in plasma targets. Laser Part. Beams 23, 211.
Betz, H.D. (1981). Heavy ion charge states. In Applied Atomic Collision Physics. Vol. 4, p. 1. New York: Academic Press.
Bohr, N. & Lindhard, J. (1954). Electron capture and loss by heavy ions penetrating through matter. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 28 (7), 130.
Dietrich, K.-G., Hoffmann, D.H.H., Boggasch, E., Jacoby, J., Wahl, H., Elfers, M., Haas, C.R., Dubenkov, V.P. & Golubev, A.A. (1992). Charge state of fast heavy ions in a hydrogen plasma. Phys. Rev. Lett. 69, 3623.
Doria, D., Lorusso, A., Belloni, F., Nassisi, V., Torrisi, L. & Gammino, S. (2004). A study of the parameters of particles ejected from a laser plasma. Laser Part. Beams 22, 461.
DuBios, R.D. et al. (2004). Electron loss from 1.4-MeV/u U4,6,10+ ions colliding with Ne N2 and Ar targets. Phys. Rev. A 70, 032712.
Fisher, D.V. & Maron, Y. (2002). Effective statistical weights of bound states in plasmas. Eur. Phys. J. D 18, 93.
Fisher, D.V. & Maron, Y. (2003). Characterization of electron states in dense plasmas and its use in atomic kinetics modeling. J. Quant. Spectr. Rad. Transf. 81, 147.
Fortov, V.E. & Yakubov, I.V. (1990). Physics of No Ideal Plasma. New York: Hemisphere Publishers.
Gryzinski, M. (1965). Classical theory of atomic collisions. I:. Theory of inelastic collisions. Phys. Rev. A 138, 336.
Hoffmann, D.H.H., Weyrich, K. & Wahl, H. (1990). Energy loss of heavy ions in a plasma target Phys. Rev. A 42, 2313.
Hoffmann, D.H.H., Blazevic, A., NI, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 47.
Jacoby, J., Hoffmann, D.H.H., Laux, W., Müller, R.W., Wahl, H., Weyrich, K., Boggasch, E., Heimrich, B., Stöckl, C, Wetzler, H. & Miyamoto, S. (1995). Stopping of Heavy Ions in a Hydrogen Plasma. Phys. Rev. Lett. 74, 1550.
Knudsen, H., Haugen, H.K. & Hvelplund, P. (1981). Single-electron-capture cross-section for medium- and high-velocity, highly charged ions colliding with atoms. Phys. Rev. A 23, 597.
Lapicki, G. & McDaniel, F.D. (1980). Electron capture from K shells by fully stripped ions. Phys. Rev. A 22, 1896.
Leon, P.T., Eliezer, S., Jose, M.P. & Martinez-Val, M. (2005). Inertial fusion features in degenerate plasmas. Laser Part. Beams 23, 193.
Maynard, G., Chabot, M. & Gardes, D. (2000). Density effect and charge dependent stopping theories for heavy ions in the intermediate velocity regime. Nucl. Instr. Meth. B 164–165, 139146.
Maynard, G. (2002). Swift heavy ions in dense plasmas: The interaction process as a probe of the plasma properties. Laser Part. Beams 20, 467.
McGuire, J.H. & Richard, P. (1973). Procedure for computing cross-sections for single and multiple ionization of atoms in the binary-encounter approximation by the impact of heavy charged particles. Phys. Rev. A 8, 1374.
Mueller, D., Grisham, L., Kaganovich, I., Watson, R.L., Horvat, V. & Zaharakis, K.E. (2001). Multiple Electron Stripping of 3.4 MeV/u Kr7+ and Xe11+ in Nitrogen. Phys. Plasmas 8, 1753.
Mueller, D., Grisham, L., Kaganovich, I., Watson, R.L., Horvat, K.E., Zaharakis, K.E. & Peng, Y. (2002). Multiple electron stripping of heavy ion beams. Laser Part. Beams 20, 551.
Meyerhof, W.E., Anholt, R.J., Eichler, J., Gould, H., Munger, Ch., Alonso, J., Thieberger, P. & Wegner, H.E. (1985). Atomic collisions with relativistic heavy ions. III: Electron capture. Phys. Rev. A 32, 3291.
Meyerhof, W.E., Anholt, R., Xu, X.-Y., Gould, H., Feinberg, B., McDonald, R.J., Wegner, H.E. & Thieberger, P. (1987). Multiple ionization in relativistic heavy-ion–atom collisions. Phys. Rev. A 35, 1967.
Nardi, E. & Zinamon, Z. (1982). Charge state and slowing of fast ions in plasma. Phys. Rev. Lett. 49, 1251.
Nardi, E., Zinamon, Z., Tombrello, T.A. & Tanushev, N. (2002). Simulation of the interaction of high energy C60 cluster ions with amorphous targets. Phys. Rev. A 66, 013201.
Nikolaev, V.S. (1967). Calculation of the effective cross-sections for proton charge exchange in collisions with multi-electron atoms. JETP 24, 847.
Ralchenko, Yu.V. & Maron, Y. (2001). Accelerated recombination due to resonant deexcitation of metastable states. J. Quant. Spectr. Rad Transf. 71, 609.
Richard, P. (1985). Atomic Inner Shell Processes I (Crassman, B., ed.), p. 73. New York: Academic.
Rosmej, O.N., Pikuz, S.A., Korostiy, S., Blazevic, A., Brambrink, E., Fertman, A., Mutin, T., Efremov, V.P., Pikuz, T.A., Faenov, A.Ya., Loboda, P., Golubev, A.A., Hoffmann, D.H.H. (2005). Radiation dynamics of fast heavy ions interacting with matter. Laser Part. Beams 23, 79.
Roth, M., Stöckl, C., Süß, W., Iwase, O., Gericke, D.O., Bock, R., Hoffmann, D.H.H., Geissel, M. & Seelig, W. (2000). Energy loss of heavy ions in laser-produced plasmas. Europhys. Lett. 50, 28.
Roth, M., Brambrink, E,. Audebert, P., Blazevic, A., Clarke, R., Cobble, J., Cowan, T.E., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T., &Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95.
Rozet, J.P., Stephan, C. & Vernhet, D. (1996). ETCHA: A program for calculating charge states at GANIL energies. Nucl. Instr. Meth. B 107, 67.
Shevelko, V.P., Tolstikhina, I.Yu. & Stohlker, Th. (2001). Stripping of fast heavy low-charged ions in gaseous targets. Nucl. Instr. Meth. B 184, 295.
Sols, F. & Flores, F. (1989). Inelastic cross-sections and charge states for B, C, N, and O ions moving in metals. Phys. Rev. A 37, 1469.
Stockl, C., Boine-Frankenheim, O., Geißel, M., Roth, M.,Wetzler, H., Seelig, W., Iwase O., Spiller, P., Bock, R., Süß, W. & Hoffmann, D.H.H. (1998). Experiments on the interaction of heavy ions with dense plasma at GSI-Darmstadt. Nucl. Instr. Meth. A 415, 558.
Xu, X.-Y., Montenegro, E.C., Anholt, R., Danzmann, K., Meyerhof, W.E., Schlachter, A.S., Rude, B.S. & McDonald, R.J. (1988). Intermediate-velocity atomic collisions. II. K-shell ionization and excitation in 8.6-MeV/amu Ca ions. Phys. Rev. A 38, 1848.
Zimmerman, G.B. & More, R.M. (1980). Pressure ionization in laser fusion target simulations. J. Quant. Spectr. Rad Transf. 23, 517.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed