Skip to main content Accessibility help

Characterization of a short-pulse high-power diode operated with anode effects

  • Dan Cai (a1), Lie Liu (a1), Jinchuan Ju (a1), Xuelong Zhao (a1), Hongyu Zhou (a1) and Xiao Wang (a2)...


Usually, the high-power microwave (HPM) devices suffer from impedance collapse and cathode material degradation or even failure. When the intense electron beam bombards the anode (or named as collector in HPM device), an anode plasma could appear under certain conditions. In this case, the impedance collapse is caused by the expansions of the cathode and anode plasmas and diode current overshot caused by the bipolar flow. In this paper, characterization of a short-pulse high-power diode operated with anode effects with a dielectric fiber (velvet) cathode is discussed. The bipolar flow (or anode plasma) is indeed evident at beam power densities ~11 MW/cm2 and the pulse durations of ~50 ns. The analysis results of the deposit dose and thermal regime of the anode show that the electron stimulated desorption played an important role in the generation of anode plasma in this case. With the effect of anode plasma, the appearance of local cathode plasma flares (or nonuniform electron emission) is particularly detrimental for the diode closure. Micro-structure and elemental surface compositions of cathode are changed by the anode splashing, which is very harmful to the performance of cathode.


Corresponding author

Address correspondence and reprint requests to: Dan Cai, College of Optoelectric Science and Engineering, National University of Defense Technology, Hunan 410073, China. E-mail:


Hide All
Barker, R.J., Booske, J.H., Luhmann, N.C. & Nusinovich, G.S. (2005). Modern Microwave and Millimeter-Wave Power Electronics. New York: IEEE, Wiley.
Benford, J., Swegle, J.A. & Schamiloglu, E. (2007). High Power Microwaves. New York: Taylor and Francis.
Bugaev, S.P., Litvinov, E.A., Mesyats, G.A. & Proskurovskii, D.I. (1975). Explosive emission of electrons. Sov. Phys. Usp. 18, 51.
Child, C.D. (1911). Discharge from hot CaO. Phys. Rev. 32, 492.
Cai, D., Liu, L., Ju, J.C., Zhao, X.L. & Qiu, Y.F. (2014). Observation of a U-like shaped velocity evolution of plasma expansion during a high-power diode operation. Laser Part. Beams 32, 433.
Cuneo, M.E. (1999). The effect of electrode contamination, cleaning and conditioning on high-energy pulsed-power device performance. IEEE Trans. Dielectr. Electr. Insul. 6, 469.
Cuneo, M.E., Menge, P.R., Hanson, D.L., Floler, W.E., Bernard, M.A., Ziska, G.R., Filuk, A.B., Pointon, T.D., Vesey, R.A., Welch, D.R., Bailey, J.E., Desjarlais, M.P., Lockner, T.R., Mehlhorn, T.A., Slutz, S.A. & Stark, M.A. (1997). Results of vacuum cleaning techniques on the performance of LiF field-threshold ion sources on extraction applied-B ion diodes at 1–10 TW. IEEE Trans. Plasma Sci. 25, 229.
Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V. & Gauvin, R. (2007). CASINO V2.42-a fast and easy-to-use modeling tool for scanning microanalysis users. Scanning 29, 92.
Fan, Y.W., Yuan, C.W., Zhong, H.H., Shu, T., Zhang, J.D., Yang, J.H., Yang, H.W., Wang, Y. & Luo, L. (2008 a). Recent progress of the improved MILO. Rev. Sci. Instrum. 79, 034703.
Fan, Y.W., Zhong, H.H., Li, Z.Q., Shu, T., Yang, H.W., Zhou, H., Yuan, C.W., Zhou, W.H. & Luo, L. (2008 b). Repetition rate operation of an improved magnetically insulated transmission line oscillator. Phys. Plasmas 15, 083102.
Fan, Y.W., Zhong, H.H., Li, Z.Q., Yuan, C.W., Shu, T., Yang, H.W., Wang, Y. & Luo, L. (2011). Investigation of a 1.2-GHz magnetically insulated transmission line oscillator. IEEE Trans. Plasma Sci. 39, 540.
Eltchaninov, A.A., Korovin, S.D., Rostov, V.V., Pegel, I.V., Mesyats, G.A., Rukin, S.N., Shpak, V.G., Yalandin, M.I. & Ginzburg, N.S. (2003). Production of short microwave pulses with a peak power exceeding the driving electron beam power. Laser Part. Beams 21, 187.
Hegeler, F., Friedman, M., Myers, M.C., Sethian, J.D. & Swanekamp, S.B. (2002). Reduction of edge emission in electron beam diodes. Phys. Plasmas 9, 4309.
Halbritter, J. (1982). On conditioning: Reduction of secondary and RF field emission by electron, photo, or helium impact. J. Appl. Phys. 55, 6475.
Halbritter, J. (1983). Enhanced electron emission and its reduction by electron and ion impact. IEEE Trans. Electr. Insul. 18, 253.
Halbritter, J. (1985). On contamination on electrode surfaces and electric field limitations. IEEE Trans. Electr. Insul. 20, 671.
Halbritter, J. (1986). Dynamical enhanced electron emission and discharges at contaminated surfaces. Appl. Phys. A 39, 49.
Ju, J.C., Liu, L. & Cai, D. (2014). Characterization of plasma expansion dynamics in a high power diode with a carbon-fiber-aluminum cathode. Appl. Phys. Lett. 104, 234102.
Korovin, S.D., Kurkan, I.K., Loginov, S.V., Pegel, I.V., Polevin, S.D., Volkov, S.N. & Zherlitsyn, A.A. (2003). Decimeter-band frequency-tunable sources of high-power microwave pulses. Laser Part. Beams 21, 175.
Langmuir, I. (1911). The effect of space charge and residual gases on thermionic currents in high vacuum. Phys. Rev. 21, 419.
Li, L.M., Liu, L., Cheng, G.X., Xu, Q.F., Ge, X.J. & Wen, J.C. (2009). Layer structure, plasma jet, and thermal dynamics of Cu target irradiated by relativistic pulsed electron beam. Laser Part. Beams 27, 497.
Li, L.M., Liu, C., Zhang, L., Wen, J.C., Wan, H. & Chu, P.K. (2014). Surface changes in FeeCreNi alloy bombarded by relativistic pulsed electron beam and associated mechanism. Vacuum 101, 136.
Litvinov, E.A. (1985). Theory of the explosive electron emission. IEEE Trans. Electr. Insul. 20, 683.
Miller, R.B. (1982). An Introduction to the Physics of Intense Charge Particle Beams. New York: Plenum.
Miller, R.B. (1998). Mechanism of explosive electron emission for dielectric fiber (velvet) cathode. J. Appl. Phys. 84, 3880.
Mesyats, G.A. (2000). Cathode Phenomena in a Vacuum Discharge: The Breakdown, the Spark and the Arc. Moscow: Nauka Publishers.
Mesyats, G.A., Korovin, S.D., Gunin, A.V., Gubanov, V.P., Stepchenko, A.S., Grishin, D.M., Landl, V.F., & Alekseenko, P.I. (2003). Repetitively pulsed high-current accelerators with transformer charging of forming lines. Laser Part. Beams 21, 197.
Markov, A.B. & Rotstein, V.P. (1997). Calculation and experimental determination of dimensions of hardening and tempering zones in quenched U7A steel irradiated with a pulsed electron beam. Nucl. Instrum. Methods Phys. Res. B 132, 79.
Roy, A., Menon, R., Mitra, S., Mitra, S., Kumar, S., Sharma, V., Nagesh, K.V., Mittal, K.C. & Chakravarthy, D.P. (2009). Shot to shot variation in perveance of the explosive emission electron beam diode. Phys. Plasmas 16, 053103.
Saveliev, Y.M., Kerr, B.A., Harbour, M.I., Douglas, S.C. & Sibbett, W. (2002). Operation of a relativistic rising-sun magnetron with cathodes of various diameters. IEEE Trans. Plasma Sci. 30, 938.
Saveliev, Y.M., Sibbett, W. & Parkes, D.M. (2003). Current conduction and plasma distribution on dielectric (velvet) explosive emission cathodes. J. Appl. Phys. 94, 5776.
Shiffler, D., Ruebush, M., Haworth, M., Umstattd, R., Lacour, M., Golby, K., Zagar, D. & Knowles, T. (2002 a). Carbon velvet field-emission cathode. Rev. Sci. Instrum. 73, 4358.
Shiffler, D., Ruebush, M., Zagar, D., Lacour, M., Sena, M., Golby, K., Haworth, M. & Umstattd, R. (2002b). Cathode and anode plasmas in short-pulse explosive field emission cathodes. J. Appl. Phys. 91, 5599.
Shiffler, D., Zhou, O., Bower, C., Lacour, M. & Golby, K. (2004). A high-current, large-area, carbon nanotube cathode. IEEE Trans. Plasma Sci. 32, 2152.
Shiffler, D.A., Luginsland, J.W., Umstattd, R., Lacour, J.M., Golby, K., Haworth, M.D., Ruebush, M., Zagar, D., Gibbs, A. & Spencer, T.A. (2002 c). Effects of anode materials on the performance of explosive field emission diodes. IEEE Trans. Plasma Sci. 30, 1232.
Tarakanov, V.P. (1992). User's Manual for Code KARAT. Berkeley, VA: Berkeley Research Associates.
Yang, J. (2013). Research and application of carbon fiber velvet cathode. PhD thesis. Chang Sha: National University of Defense Technology.
Yang, J., Shu, T. & Wang, H. (2012 a). Improved long-term electrical stability of pulsed high-power diodes using dense carbon fiber velvet cathodes. Phys. Plasmas 19, 072119.
Yang, J., Shu, T., Zhang, J., Fan, Y.W. & Zhu, J. (2012 b). Time-resolved plasma characteristics in a short-pulse high-power diode with a dielectric fiber (velvet) cathode. IEEE Trans. Plasma Sci. 40, 1696.
Yang, J., Shu, T., Zhang, J. & Fan, Y.W. (2013 a). Time-and-space resolved comparison of plasma expansion velocities in high-power diodes with velvet cathodes. J. Appl. Phys. 113, 043307.
Yang, J., Shu, T., Zhang, J. & Fan, Y.W. (2013 b). Time evolution of the two-dimensional expansion velocity distributions of the cathode plasma in pulsed high-power diodes. Laser Part. Beams 31, 129.
Zecca, A., Brusa, R.S., Naia, M.D., Paridaens, J., Pogrebnjak, A.D., Markov, A.B., Ozur, G.E., Proskurovsky, D.I. & Rotstein, V.P. (1993). Modification of the α–Fe surface using a low energy high current electron beam. Phys. Lett. A 175, 433.


Related content

Powered by UNSILO

Characterization of a short-pulse high-power diode operated with anode effects

  • Dan Cai (a1), Lie Liu (a1), Jinchuan Ju (a1), Xuelong Zhao (a1), Hongyu Zhou (a1) and Xiao Wang (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.