Skip to main content Accessibility help

Application of picosecond terawatt laser pulses for fast ignition of fusion

  • H. Hora (a1), G.H. Miley (a2), M. Ghoranneviss (a3) and A. Salar Elahi (a3)


In this research, we presented the application of picosecond terawatt laser pulses for ultrahigh acceleration of plasma blocks for fast ignition of fusion. Ultrahigh acceleration of plasma blocks after irradiation of picosecond laser pulses of around terawatt power in the range of 1020 cm/s2 was discovered by Sauerbrey (1996) as measured by Doppler effect where the laser intensity was up to about 1018 W/cm2. This is several orders of magnitude higher than acceleration by irradiation based on thermal interaction of lasers has produced. This ultrahigh acceleration resulted from hydrodynamic computations at plane target interaction in 1978 at comparable conditions where the interaction was dominated by the nonlinear (generalized ponderomotive) forces where the laser energy was instantly converted into plasma motion in contrast to slow and delayed thermal collision processes. After clarifying this basic result, the application of the plasma blocks for side-on ignition of solid density or modestly compressed fusion fuel following the theory of Chu (1971) is updated in view of later discovered plasma properties and the ignition of deuterium tritium and of proton-11B appeared possible for a dozen of PW-PS laser pulses if an extremely high contrast ratio avoided relativistic self-focusing. A re-evaluation of more recent experiment confirms the acceleration by the nonlinear force, and the generation of the fusion flame with properties of Rankine-Hugoniot shocks is reported.


Corresponding author

Address correspondence and reprint requests to: A. Salar Elahi, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran. E-mail:


Hide All
Alfven, H. (1981). Cosmic Plasma. Dordrecht: Reidel.
Azechi, H., Jitsuno, T., Kanabe, T., Katayama, M., Mima, K., Miyanaga, N., Nakai, M., Nakai, S., Nakaishi, H., Nakatsuka, M., Nishiguchi, A., Norrays, P.A., Setsuhara, Y., Takagi, M. & Yamanaka, M. (1991). High-density compression experiments at ILE Osaka. Laser Part. Beams 9, 193207.
Badziak, J., Kozlov, A.A., Makowksi, J., Parys, P., Ryc, L., Wolowski, J., Woryna, E. & Vankov, A.B. (1999). Investigation of ion streams emitted from plasma produced with a high-power picosecond laser. Laser Part. Beams 17, 323329.
Badziak, J., Glowacz, S., Jablonski, S., Paris, P., Wolowski, J., Kraska, J., Laska, J., Rohlena, K. & Hora, H. (2004). Production of ultrahigh ion current densities at skin-Layer subrelativistic laser-plasma interaction. Plasma Phys. Contr. Fusion 46, B541B555.
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005). Generation of picosecond high-density ion fluxes by skin-layer laser-plasma interaction. Laser Part. Beams 23, 143148.
Bobin, J.L. (1974). Nuclear fusion reactions in fronts propagating in solid DT. In Laser Interaction and Related Plasma Phenomena (Schwarz, H. and Hora, H., Eds.). New York: Plenum Press, Vol. 4B, 465494.
Campbell, E.M. (2005). High Intensity Laser-Plasma Interaction and Applications to Inertial Fusion and High Energy Density Physics. Doctor of Science thesis. Sydney: University of Western Sydney/Australia.
Cicchitelli, L., Hora, H. & Postle, R. (1990). Longitudinal field components of laser beams in vacuum. Phys. Rev. A 41, 37273732.
Cang, Y., Osman, F.Hora, H., Zhang, J.Badziak, J., Wolowski, J.Jungwirth, K., Rohlena, K. & Ullmschmied, J. (2006). Computations for nonlinear force driven plasma blocks by picosecond laser pulses for fusion. J. Plasma Phys. 71, 3551.
Cowan, T.E., Parry, M.D., Key, M.H., Dittmire, T.R., Hatchett, S.P., Henry, E.A., Mody, J.D., Moran, M.J., Pennington, D.M., Phillips, T.W., Sangster, T.C., Sefcik, J.A., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C, Young, P.E., Takahashi, Y., Dong, B., Fountain, W., Parnell, T., Johnson, J., Hunt, A.W. & Kuhl, T. (1999). High energy electrons, nuclear phenomena and heating in petawatt laser-solid experiments. Laser Part. Beams 17, 773783.
Chen, F.F. (1974). Physical mechanisms for laser-plasma parametric instabilities In Laser Interaction and Related Plasma Phenomena (Schwarz, H. J. and Hora, H., Eds.) New York: Plenum Press, Vol. 3A, pp. 291313.
Chu, M.S. (1971). Thermonuclear reaction waves at high densities. Phys. Fluids 15, 412422.
Földes, I.B., Bakos, J.S., Gal, K., Juhasz, Z., Kedves, M.A., Kocsis, G., Szatmari, S. & Veres, G. (2000). Properties of high harmonics generated by ultrashort uv laser pulses on solid surfaces. Laser Phys. 10, 264269.
Földes, I.B. & Szatmari, S. (2008). On the use of KrF lasers for fast ignition. Laser Part. Beams 26, 575582.
Gabor, D. (1953) Wave theory of plasmas. Proc. Roy. Soc. (London) A 213, 7286.
Glenzer, S.H., Moses, E., et al. (2011). Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums. Phys. Rev. Lett. 106, 085004/1–5.
Glowacz, S., Badziak, J., Jablonski, J. & Hora, H. (2004). Numerical modelling of production of ultrahigh-current-density ion beams by short-pulse laser-plasma interaction. Czk J. Phys. 54, C460–C467.
Glowacz, S., Hora, H., Badziak, J., Jablonski, S., Cang, Yu & Osman, F. (2006). Analytical description of rippling effect and ion acceleration in plasma produced by a short laser pulse. Laser Part. Beams 24, 1526.
Häuser, T., Scheid, W. & Hora, H. (1992). Theory of ions emitted from a plasma by relativistic self-focusing of laser beams. Phys. Rev. A 45, 12781281.
Hora, H. & Ray, P.S. (1978). Increased nuclear fusion yields of inertially confined DT plasma due to reheat. Z. f. Naturforschung A 33, 890894.
Hora, H. (1975). Theory of relativistic self-focuing of laser radiation in Plasmas. J. Opt. Soc. Am. 65, 882886.
Hora, H. (1981). Physics of Laser Driven Plasmas. New York: John Wiley.
Hora, H. (1983). Interpenetration burn for controlled inertial confinement fusion by nonlinear forces. Atomkernenergie 42, 710.
Hora, H. (1991). Plasmas at High Temperature and Density. Heidelberg: Springer.
Hora, H. (2003). Skin-depth theory explaining anomalous picosecond-terawatt laser plasma interaction II. Cz. J. Phys. 53, 199217.
Hora, H. (2006). Smoothing and stochastic pulsation at high power laser-plasma interaction. Laser Part. Beams 24, 455463.
Hora, H., Azechi, H., Kitagawa, Y., Mima, K., Murakami, M., Nakai, S., Nishihara, K., Takabe, H., Yamanaka, C., Yamanaka, M. & Yamanaka, T. (1998). Measured laser fusion gains reproduced by self-similar volume compression and volume ignition for NIF conditions. J. Plasma Phys. 60, 743760.
Hora, H., Badziak, J., Boody, F., Höpfl, R., Jungwirth, K., Kralikova, B., Kraska, J., Laska, L., Parys, P., Perina, P., Pfeifer, K. & Rohlena, J. (2002). Effects of picosecond and ns laser pulses for giant ion source. Opt. Commun. 207, 333338.
Hora, H., Badziak, J., Read, M.N., Li, Yu-Tong, Liang, Tian-Jiao, Liu Hong, Sheng Zheng-MingZhang, Jie, Osman, F., Miley, G.H., Zhang, Weiyan, He, Xianto, Peng, Hanscheng, Glowacz, S., Jablonski, S., Wolowski, J., Skladanowski, Z., Jungwirth, K., Rohlena, K. & Ullschmied, J. (2007). Fast ignition by laser driven beams of very high intensity. Phys. Plasmas 14, 072701/1–7.
Hora, H., Lalousis, P. & Eliezer, S. (1984). Analysis of the inverted double-layers produced by nonlinear forces in laser-produced plasmas. Phys. Rev. Lett. 53, 16501652.
Hora, H., Malekynia, B., Ghoranneviss, M., Miley, G.H. & He, X. (2008). Twenty times lower ignition threshold for laser driven fusion using collective effects and the inhibition factor. Appl. Phys. Lett. 93, 011101/1–3.
Hora, H., Miley, G.H., Ghornanneviss, M., Malekynia, B., Azizi, N. & He, X. (2010). Fusion energy without radioactivity: Laser ignition of solid density hydrogen-boron(11) fuel. Ener. Environ. Sci. 3, 479486.
Kaluza, M., Schreiber, J., Sandala, M.I.K., Tsakiris, G.D., Eidmann, K., Meyer-Ter-Vehn, J. & Witte, K. (2004). Influence of the laser prepulse on proton acceleration in thin foil experiments. Phys. Rev. Lett. 93, 045003.
Kato, Y., Mima, K., Miyanaga, N., Arinaga, S., Kitagawa, Y., Nakatsuka, A. & Yamanaka, C. (1984). Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett. 53, 10571060.
Kirkpatrick, R.C. & Wheeler, J.A. (1981). Nucl. Fusion 21, 398.
Kulsrud, R. (1983). Book Review: Hannes Alfven. Phys. Today 34, 56.
Lalousis, P. & Hora, H. (1983). First direct electron and ion fluid computation of high electrostatic fields in dense inhomogeneous plasmas with subsequent nonlinear laser interaction. Laser Part. Beams 1, 283304.
Li, Yuandi. (2010). Nuclear power without radioactivity. In Highlights in Chemical Technology. London: Royal Chemical Society.
Lindl, J.D. (2005). The Edward Teller Medal Lecture: The evolution toward indirect drive and two decades of progress toward ignition and burn, Edward Teller Lectures: Laser and Inertial Fusion Energy (Hora, H. and Miley, G.H., Eds.) London: Imperial College Press, pp, 121147.
Mourou, G. & Tajima, T. (2002). Ultraintense lasers and their applications. In Inertial Fusion Science and Applications 2001 (Tanaka, V.R., Meyerhofer, D.D., Meyer-ter-Vehn, J., Eds.). Paris: Elsevier, pp. 831839.
Nuckolls, J.L. & Woods, L. (2002). Future of inertial fusion energy. Proceedings International Conference on Nuclear Energy Systems ICNES, Albuquerque, NM.
Sadighi-Bonabi, R., Yazdani, E., Cang, Y. & Hora, H. (2010). Dielectric magnifying of plasma blocks by nonlinear force acceleration and with delayed electron heating. Phys. Plasmas 17, 113108/1–5.
Sauerbrey, R. (1996). Acceleration of femtosecond laser produced plasmas. Phys. Plasmas 3, 47124716.
Schlüter, A. (1950). Dynamik des Plasmas – I: Grundgleichungen, Plasma in gekreutzten Feldern. Z. f. Natrur. A 5, 7278.
Soures, J.M., Mccrory, R.L., Vernon, C.P., Babushki, A., Bahr, R.E., Boehli, T.R., Boni, R., Bradlay, D.K., Brown, D.L., Craxton, R.S., Delettrez, J.A., Donaldson, W.R., Epstein, R., Jaanimagi, P.A., Jacobs, S.D., Kearney, K., Keck, R.L., Kelly, J.H., Kessler, T.J., Kremes, R.L., Knauaer, J.P., Kumpan, S.A., Letzring, S.A, Lonobile, D.J., Loucks, S.J., Lund, L.D., Marshall, F.J., Mckenty, P.W., Meyerhofer, D.D., Morse, S.F.B., Okishev, A., Papernov, S., Pien, G.Seka, W., Short, R., Shoup Iii, M.J., Skeldon, S., Skoupski, S., Schmid, A.W., Smith, D.J., Swmales, S., Wittman, M. & Yaakobi, B. (1996). Direct-drive laser-fusion experiments with the OMEGA, 60-beam, >40 kJ, ultraviolet laser system. Phys. Plasmas 3, 21082112.
Storm, E. (1986). Press Conference. Lawrence Livermore National Laboratory. 16 January.
Storm, E., Lindl, J.D., Campbell, E.M., Bernat, T.P., Coleman, I.W., Emmett, J.L., Hogan, W.J., Horst, Y.T., Krupke, W.F. & Lowdermilk, W.H. (1988). Progress in laboratory high-gain ICF: Progress for the future Livermore. LLNL Report 47312.
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 56, 219221.
Szatmari, S. & Schäfer, F.P. (1988). Simplified laser system for the generation of 60 fs pulses at 248 nm. Opt. Commun. 68, 196201.
Szatmari, S. (1994). Appl. Phys. B 58, 211.
Veres, G., Kocsis, G., Racz, E. & Szatmari, S. (2004). Doppler shift of femtosecond pulses from solid density plasmas. Appl. Phys. B 78, 635638.
Tabak, M., Hammer, J., Glinsky, M.N., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition of high-gain with ultra powerfull lasers. Phys. Plasmas 1, 16261634.
Yamanaka, C. & Nakai, S. (1986). Thermonuclear neutron yield of 1012 achieved with Gekko XII green laser. Nat. 319, 757759.
Yang, X., Miley, G.H., Flippo, K.A. & Hora, H. (2011). Energy enhancement for deuteron beam fast ignition of a pre-compressed inertial confinement fusion (ICF) target. Phys. Plasmas 18.
Zhang, P., He, J.T., Chen, D.B., Li, Z.H., Zhang, Y., Wong, Lang, Li, Z.H., Feng, B.H., Zhang, D.X., Tang, X.W. & Zhang, J. (1998). X-ray emission from ultraintense-ultrashort laser irradiation. Phys. Rev. E 57, 37463752.


Application of picosecond terawatt laser pulses for fast ignition of fusion

  • H. Hora (a1), G.H. Miley (a2), M. Ghoranneviss (a3) and A. Salar Elahi (a3)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed