Skip to main content Accessibility help

Angular distribution and forward peaking of laser produced plasma ions



This paper represents the results of a study of angular distribution of laser produced ions (LPI) of Al, Cu, and Ag. The angular distribution is studied by CR-39 (SSNTD) and ion assisted sputtering experiments. A Q-Switched Nd:YAG laser (1.064 μm, 1.1 MW) with 10 mJ pulsed energy was used to produce the Ag ions, which were detected by CR-39 detector mounted at −17.5°, 0°, 17.5°, 30°, 60°, and 90° from the normal to the target placed at a distance of 9 cm from the target. Etched CR-39 detectors then observed under the Motic DMB Series optical microscope. A bunch of ions was detected along the normal of target due to self generated collimation of ions. This is termed as Forward Peaking of Laser Produced Ions. Similar results were also observed from sputtering of polished Al substrate by laser produced ions of Cu and Sputtering of polished Cu substrate by laser produced ions of Al. The surface morphology of the ion irradiated samples were observed under the Scanning Electron microscope (SEM) S 300 Hi-tech. Formation of a circular damage on the surface of the substrates by irradiation conforms the ions collimation along the normal or Forward Peaking of ions.


Corresponding author

Address correspondence and reprint requests to: Muhammad Shahbaz Anwar, Department of Physics, University of Engineering and Technology, Lahore (9242) 6829204, Pakistan. E-mail:


Hide All


Bykovskii, Yu. A., Degtyarenko, N.N., Kondrashov, V.E. & Lovetskii, E.E. (1974). In pulsed laser deposition of thin films. Phys. Tech. Phys. 18, 1597.
Chrisey, D.B. & Hubler, G.K. (1999). Pulsed Laser Deposition of Thin Films. New York: John Wiley and Sons, pp. 4, 118–199, 201.
Dickinson, J.T., Langford, S.C. & Jensen, L.C. (1991). Laser Ablation: Mechanisms and Applications. Heidelberg: Springer Verlag, p. 301.
Harilal, S.S., Bindhu, C.V., Tillack, M.S., Najmabadi, F. & Gaeris, A.C. (2003). Plume splitting and sharpening in laser produced aluminum plasma. J. Appl. Phys. 93, 2380.
Hutchinson, I.H. (2002). Principles of Plasma Diagnostics, second edition, New York: Cambridge University Press, p. 109.
Laska, L. & Krasa, J. (2001). Nuclear instrument and methods in physics. Res. B 184, 327.
Ogawa, M., Yoshida, M., Nakajima, M., Hasegawa, J., Fukata, S., Horioka, K. & Oguri, Y. (2003). High-current laser ion source based on a low-power laser. Laser Part. Beams 21, 633638.
Peterlongo, A., Miotello, A. & Kelly, R. (1994). Laser-pulse sputtering of aluminum: Vaporization, boiling, superheating, and gas-dynamic effects. Phys. Rev. E 50, 47164727.
Rafique, M.S., Khaleeq-ur-Rahman, M., Siraj, K., Rizwana, S. & Afzal, S. (2003). Angular distribution of copper laser produced plasma. Proc. Plasma Phys. Control Fusion ECA 27, 384.
Rosmej, F.B., Hoffman, D.H.H., Süss, W., Stepanov, A.E., Satov, Yu. A., Smakovskii, Yu. B., Roerich, V.K., Khomenko, S.V., Starostin, K.N., Faenov, A. Ya., Skobelev, I. Ya., Magunov, A.I., Geissel, M., Pirzadeh, P., Seelig, W., Pikus, T. A., Bock, R., Letardi, T., Flora, F., Ballanti, S., Di Lazzaro, P., Reale, A., Scafati, A., Tomassatti, G., Auguste, T., D'Oliveira, P., Hulis, S., Monot, P. & Sharkov, B. Yu. (2002). The generation of fast particles in plasmas created by laser pulses with different wavelengths. J. Exp. Theor. Phys. 94, 6072.
Stepnov, A.E., Satov, Yu. A., Makarov, K.N., Roerich, V.C., Smakovskiy, Yu. B., Maluta, D.D. & Starostin, A. N. (2003). Sutdy of angular dependence of ion component parameters in CO2-laser-produced plasma. Plasma Phys. Controlled Fusion 45, 12611281.
Umstadter, D.J. (2003). Relativistic laser-plasma interaction. Phys. D: Appl. Phys. 36, R151R165.
Ying, M., Xia, Y., Sun, Y., Zhao, M., Ma, Y., Liu, X., Yufei, Li. & Hou, X. (2003). Plasma properties of a laser ablated aluminum in air. Laser Part. Beams 21, 97101.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed