Skip to main content Accessibility help

Angular distribution and conversion of multi-keV L-shell X-ray sources produced from nanosecond laser irradiated thick-foil targets

  • G.-Y. Hu (a1) (a2) (a3), J.-Y. Zhang (a2), J. Zheng (a3), B.-F. Shen (a1), S.-Y. Liu (a2), J.-M. Yang (a2), Y.-K. Ding (a2), X. Hu (a2), Y.-X. Huang (a2), H.-B. Du (a2), R.-Q. Yi (a2), A.-L. Lei (a1) and Z.-Z. Xu (a1)...


An experimental study on the angular distribution and conversion of multi-keV X-ray sources produced from 2 ns-duration 527nm laser irradiated thick-foil targets on Shenguang II laser facility (SG-II) is reported. The angular distributions measured in front of the targets can be fitted with the function of f(θ) = α+ (1−α)cosβθ (θ is the viewing angle relative to the target normal), where α = 0.41 ± 0.014, β = 0.77 ± 0.04 for Ti K-shell X-ray sources (~4.75 keV for Ti K-shell), and α = 0.085 ± 0.06, β = 0.59 ± 0.07 for Ag/Pd/Mo L-shell X-ray sources (2–2.8 keV for Mo L-shell, 2.8–3.5 keV for Pd L-shell, and 3–3.8 keV for Ag L-shell). The isotropy of the angular distribution of L-shell emission is worse than that of the K-shell emission at larger viewing angle (>70°), due to its larger optical depth (stronger self-absorption) in the cold plasma side lobe surrounding the central emission region, and in the central hot plasma region (emission region). There is no observable difference in the angular distributions of the L-shell X-ray emission among Ag, Pd, and Mo. The conversion efficiency of Ag/Pd/Mo L-shell X-ray sources is higher than that of the Ti K-shell X-ray sources, but the gain relative to the K-shell emission is not as high as that by using short pulse lasers. The conversion efficiency of the L-shell X-ray sources decreases with increasing atomic numbers (or X-ray photon energy), similar to the behavior of the K-shell X-ray source.


Corresponding author

Address correspondence and reprint requests to: G.Y. Hu, State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai 201800, China. E-mail:


Hide All
Abdallah, J., Batani, D., Desai, T., Lucchini, G., Faenov, A., Pikuz, T., Magunov, A. & Narayanan, V. (2007). High resolution X-ray emission spectra from picosecond laser irradiated Ge targets. Laser Part. Beams 25, 245252.
Arora, V., Chakera, J.A., Kumbhare, S.R., Naik, P.A., Gupta, N.K. & Gupta, P.D. (2001). Angular distribution of X-ray line radiation from laser-irradiated planar targets. Laser Part. Beams 19, 253257.
Babonneau, D., Bonnet, L., Jacquemot, S., Bocher, J.L., Boutin, J.Y., Jadaud, J.P. & Vilette, B. (1999). X-ray conversion with PHEBUS laser. Laser Part. Beams 17, 459463.
Back, C.A., Grun, J., Decker, C., Suter, L.J., Davis, J., Landen, O.L., Wallace, R., Hsing, W.W., Laming, J.M., Feldman, U., Miller, M.C. & Wuest, C. (2001). Efficient multi-keV underdense laser-produced plasma radiators. Phys. Rev. Lett. 87, 275003.
Back, C.A., Grun, J., Decker, C., Suter, L.J., Davis, J., Landen, O.L., Wallace, R., Hsing, W.W., Laming, J.M., Feldman, U., Miller, M.C. & Wuest, C. (2003). Multi-keV X-ray conversion efficiency in laser-produced plasmas. Phys. Plasmas 10, 20472055.
Batha, S.H., Procassini, R.J., Hammel, B.A., Shepard, T.D., Drake, R.P., Bradley, K.S., Estabrook, K., Hsieh, E.J., Keane, C.J., Montgomery, D.S. & Phillion, D.W. (1995). Characterization of titanium laser-produced plasmas. Phys. Plasmas 2, 37923803.
Celliers, P., Da Silva, L.B., Dane, C.B., Mrowka, S., Norton, M., Harder, J., Hackel, L., Matthews, D.L., Fiedorowicz, H., Bartnik, A., Maldonado, J.R. & Abate, J.A. (1996). Optimization of X-ray sources for proximity lithography produced by a high average power Nd:glass laser. J. Appl. Phys. 79, 82588268.
Chase, L.F., Jordan, W.C., Perez, J.D. & Pronko, J.G. (1977). Angular distributions of X-ray line radiation from a laser-produced plasma. Appl. Phys. Lett. 30, 137139.
Deng, X., Liang, X., Chen, Z., Yu, W. & Ma, R. (1986). Uniform illumination of large targets using a lens array. Appl. Opt. 25, 377381.
Dunn, J., Young, B.K.F., Osterheld, A.L., Foord, M.E., Walling, R.S. & Stewart, R.E. (1995). Spectroscopic investigations of hard X-ray emission from 120-ps laser-produced plasmas at intensities near 1017 W cm−2. Proc. SPIE 2523, 254263.
Eidmann, K. & Schwanda, W. (1991). Conversion of laser light into soft X rays with 3-ns and 30-ps laser pulses. Laser Part. Beams 9, 551562.
Fabbro, R., Max, C. & Fabre, E. (1985). Planar laser-driven ablation: Effect of inhibited electron thermal conduction. Phys. Fluids 28, 14631481.
Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Gasilov, S.V., Stagira, S., Calegari, F., Nisoli, M., De Silvestri, S., Poletto, L., Villoresi, P. & Andreev, A.A. (2007). X-ray spectroscopy observation of fast ions generation in plasma produced by short low-contrast laser pulse irradiation of solid targets. Laser Part. Beams 25, 267275.
Fiedorowicz, H. (2005). Generation of soft X-rays and extreme ultraviolet (EUV) using a laser-irradiated gas puff target. Laser Part. Beams 23, 365373.
Filevich, J., Rocca, J.J., Jankowska, E., Hammarsten, E.C., Kanizay, K., Marconi, M.C., Moon, S.J. & Shlyaptsev, V.N. (2003). Two-dimensional effects in laser-created plasmas measured with soft-X-ray laser interferometry. Phys. Rev. E 67, 056409.
Fournier, K.B., Constantin, C., Poco, J., Miller, M.C., Back, C.A., Suter, L.J., Satcher, J., Davis, J. & Grun, J. (2004). Efficient multi-keV X-ray sources from Ti-doped aerogel targets. Phys. Rev. Lett. 92, 165005.
Fournier, K.B., Constantin, C., Back, C.A., Suter, L., Chung, H.-K., Miller, M.C., Froula, D.H., Gregori, G., Glenzer, S.H., Dewald, E.L. & Landen, O.L. (2006). Electron-density scaling of conversion efficiency of laser energy into L-shell X-rays. J. Quant. Spect. Rad. Tran. 99, 186198.
Girard, F., Jadaud, J.P., Naudy, M., Villette, B., Babonneau, D., Primout, M., Depierreux, S., Miller, M.C., Kauffman, R.L., Suter, L.J., Fournier, K.B., Glenzer, S.H., Back, C., Grun, J. & Davis, J. (2004). Multi-keV X-ray conversion from prepulsed foil experiments. Proc. SPIE 5196, 220233.
Girard, F., Jadaud, J.P., Naudy, M., Villette, B., Babonneau, D., Primout, M., Miller, M.C., Kauffman, R.L., Suter, L.J., Grun, J. & Davis, J. (2005). Multi-keV X-ray conversion efficiencies of laser-preexploded titanium foils. Phys. Plasmas 12, 092705.
Glendinning, S.G., Amendt, P., Budil, K.S., Hammel, B.A., Kalantar, D.H., Key, M.H., Landen, O.L., Remington, B.A. & Desenne, D.E. (1995). Laser plasma diagnostics of dense plasmas. Proc. SPIE 2523, 2939.
Glenzer, S.H., Gregori, G., Lee, R.W., Rogers, F.G., Pollaine, S.W. & Landen, O.L. (2003). Demonstration of spectrally resolved X-ray scattering in dense plasmas. Phys. Rev. Lett. 90, 175002.
Glibert, K.M., Anthes, J.P., Gusinow, M.A. & Palmer, M.A. (1980). X-ray yields of plasmas heated by 8-nsec neodymium laser pulses. J. Appl. Phys. 51, 14491451.
Griem, H.R. (1997) Principles of Plasma Spectroscopy. New York: Cambridge University Press.
Higashiguchi, T., Kawasaki, K., Sasaki, W. & Kubodera, S. (2006). Enhancement of extreme ultraviolet emission from a lithium plasma by use of dual laser pulses. Appl. Phys. Lett. 88, 161502.
Hu, G.Y., Liu, S.Y., Zheng, J., Wu, C.S., Li, J.H., Wu, S.C., Zhang, J.Y., Yang, J.M., Yang, G.H., Yi, R.Q., Du, H.B., Huang, Y.X., Hu, X. & Ding, Y.K. (2007). Efficient K-shell X-ray sources produced with titanium foils. Phys. Plasmas 14, 033103.
Hu, G.Y., Zheng, J., Shen, B.F., Lei, A.L., Liu, S.Y., Zhang, J.Y., Yang, J.M., Yang, G.H., Ding, Y.K., Hu, X., Huang, Y.X., Du, H.B., Yi, R.Q. & Xu, Z.Z. (2008). Characterization of a multi-keV X-ray source produced by nanosecond laser irradiation of a solid target: The influence of laser focus spot and target thickness. Phys. Plasmas 15, 023103.
Kalantar, D.H., Haan, S.W., Hammel, B.A., Keane, C.J., Landen, O.L. & Munro, D.H. (1997). X-ray backlit imaging measurement of in-flight pusher density for an indirect drive capsule implosion. Rev. Sci. Instrum. 68, 814816.
Kauffman, R.L. (1991) X-ray radiation from laser plasma. In Handbook of Plasma Physics (Rubenchik, A.M. and S. Witkowski, S., Eds.). Amsterdam: Elsevier.
Kodama, R., Okada, K., Ikeda, N., Mineo, M., Tanaka, K.A., Mochizuki, T. & Yamanaka, C. (1986). Soft X-ray emission from ω0, 2ω0, and 4ω0 laser-produced plasmas. J. Appl. Phys. 59, 30503052.
Kodama, R., Mochizuki, T., Tanaka, K.A. & Yamanaka, C. (1987). Enhancement of keV X-ray emission in laser-produced plasmas by a weak prepulse laser. Appl. Phys. Lett. 50, 720722.
Labate, L., Cecchetti, C.A., Galimberti, M., Giulietti, A., Giulietti, D. & Gizzi, L.A. (2005). Detailed characterization of the early X-ray emission of a plasma produced by point-like laser irradiation of solid Al targets. Phys. Plasmas 12, 083101.
Limpouch, J., Renner, O., Krousky, E., Uschmann, I., Forster, E., Kalashnikov, M.P. & Nickles, P.V. (2002). Line X-ray emission from Al targets irradiated by high-intensity variable-length laser pulses. Laser Part. Beams 20, 4349.
Lin, Z., Deng, X., Fan, D., Wang, S., Chen, S., Zhu, J., Qian, L., Shen, X., Xu, F., Zhu, J., Ma, W., Xie, X., Zheng, Y., Zhang, W., Chen, Q., Ling, M., Huang, H. & Zhang, J. (1999). SG-II laser elementary research and precision SG-II program. Fusion Eng. Des. 44, 6166.
Mattews, D.L., Campbell, E.M., Ceglio, N.M., Hermes, G., Kauffman, R., Koppel, L., Lee, R., Manes, K., Rupert, V., Slivinshy, V.W., Turner, R. & Ze, F. (1983). Characterization of laser-produced plasma X-ray sources for use in X-ray radiography. J. Appl. Phys. 54, 42604268.
Max, C.E. (1982) Physics of the coronal plasma in laser fusion targets. In Laser-Plasma Interaction (Balian, R and J. C. Adam, J.C., Eds). Amsterdam: North-Holland.
Mead, W.C., Campbell, E.M., Estabrook, K.G., Turner, R.E., Kruer, W.L., Lee, P.H.Y., Pruett, B., Rupert, V.C., Tirsell, K.G., Stradling, G.L., Ze, F., Max, C.E. & Rosen, M.D. (1981). Laser-plasma interactions at 0.53 µm for disk targets of varying Z. Phys. Rev. Lett. 47, 12891292.
Mead, W.C., Campbell, E.M., Estabrook, Kent, Turner, R.E., Kruer, W.L., Lee, P.H.Y., Pruett, B., Rupert, V.C., Tirsell, K.G., Stradling, G.L., Ze, F., Max, C.E., & Lasinski, B.F., (1983). Laser irradiation of disk targets at 0.53 µm wavelength. Phys. Fluids 26, 23162331.
Mochizuki, T. & Yamanaka, C. (1986). Efficient soft X-ray generated in short wavelength laser produced plasmas. Proc. SPIE 733, 2327.
Montgomery, D.S., Landen, O.L., Drake, R.P., Estabrook, K.G., Baldis, H.A., Bradley, S.H. & Procassini, R.J. (1994). Measurements of radial heat wave propagation in laser-produced exploding-foil plasmas. Phys. Rev. Lett. 73, 20552058.
Pelletier, J.F., Chaker, M. & Kieffer, J.C. (1997). Soft X-ray emission produced by a sub-picosecond laser in a single- and double-pulse scheme. J. Appl. Phys. 81, 59805983.
Peng, H.S., Zhang, X.M., Zheng, W.G., Wei, X.F., Huang, X.J., Sui, Z., Jing, F., Zhu, J., Zhu, Q.H., Wang, X.D., Zhou, K.N., Liu, L.Q., Zeng, X.M., Wang, X., Zhu, J.Q., Lin, Z.Q. & Zhang, W.Y. (2006). High-power solid-state lasers for high-energy-density physics applications at CAEP. Proc. SPIE 6344, 634402.
Phillion, D.W. & Hailey, C.J. (1986). Brightness and duration of X-ray line sources irradiated with intense 0.53-µm laser light at 60 and 120 ps pulse width. Phys. Rev. A 34, 48864896.
Pikuz, T.A., Faenov, A.Ya, Fraenkel, M.A., Zigler, , Flora, F., Bollanti, S., Dilazzaro, P., Letardi, T., Grilli, A., Palladino, L., Tomassetti, G., Reale, A., Reale, L., Scafati, A., Limongi, T., Bonfigli, F., Alainelli, L. & Sanchez, Del Rio M. (2002). Shadow monochromatic backlighting: Large-field high resolution X-ray shadowgraphy with improved spectral tenability. Laser Part. Beams 19, 285293.
Primout, M. (2005). Optimization of X-ray conversion efficiency of laser preformed metallic plasma. J. X-ray Sci. Technol. 13, 2336.
Rafique, M.S., Khaleeq-Ur-Rahman, M., Riaz, I., Jalil, R. & Farid, N. (2008). External magnetic field effect on plume images and X-ray emission from a nanosecond laser produced plasma. Laser Part. Beams 26, 217224.
Riley, D., Weaver, I., McSherry, D., Dunne, M., Neely, D., Notley, M. & Nardi, E. (2002 a). Direct observation of strong coupling in a dense plasma. Phys. Rev. E 66, 046408.
Riley, D., Woolsey, N.C., McSherry, D., Khattak, F.Y. & Weaver, I. (2002 b). He-like X-ray line emission from laser irradiated sources. Plasma Sour. Sci. Technol. 11, 484491.
Riley, D., Khattak, F.Y., Garcia Saiz, E., Gregori, G., Bandyopadhyay, S., Notley, M., Neely, D., Chambers, D., Moore, A. & Comley, A. (2007). Spectrally resolved X-ray scatter from laser-shock-driven plasmas. Laser Part. Beams 25, 465469.
Ruggles, L.E., Porter, J.L., Rambo, P.K. Jr., Simpson, W.W., Vargas, M.F., Bennett, G.R. & Smith, I.C. (2003). Measurements of 4–10 keV X-ray production with the Z-Beamlet laser. Rev. Sci. Instrum. 74, 22062210.
Schollmeier, M., Rodriguez Prieto, G., Rosmej, F.B., Schaumann, G., Blazevic, A., Rosmej, O.N. & Roth, M. (2006). Investigation of laser-produced chlorine plasma radiation for non-monochromatic X-ray scattering experiments. Laser Part. Beams 24, 335345.
Schollmeier, M., Becker, S., Geissel, M., Flippo, K.A., Blazevic, A., Gaillard, S.A., Gautier, D.C., Gruner, F., Harres, K., Kimmel, M., Nurnberg, F., Rambo, P., Schramm, U., Schreiber, J., Schutrumpf, J., Schwarz, J., Tahir, N.A., Atherton, B., Habs, D., Hegelich, B.M. & Roth, M. (2008). Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices. Phys. Rev. Lett. 101, 055004.
Scott, J.M., Beck, J.B., Batha, S.H., Barnes, C.W. & Tubbs, D.L. (2001). Radiographic image analysis of cylindrical implosion experiments (invited). Rev. Sci. Instrum. 72, 643650.
Tahir, N.A., Udrea, S., Deutsch, C., Fortov, V.E., Grandjouan, G., Gryaznov, V., Hoffmann, D.H.H., Hulsmann, P., Kirk, M., Lomonosov, I.V., Piriz, A.R., Shutov, A., Spiller, P., Temporal, M. & Varentsov, D. (2004). Target heating in high-energy-density matter experiments at the proposed GSI FAIR facility: Non-linear bunch rotation in SIS 100 and optimization of spot size and pulse length. Laser Part. Beams 22, 485493.
Tahir, N.A., Spiller, P., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Wouchuk, G., Deutsch, C., Fortov, V.E., Hoffmann, D.H.H. & Schmidt, R. (2007). HEDgeHOB: High-energy density matter generated by heavy ion beams at the future facility for antiprotons and ion research. Nucl. Instr. Meth. Meth. A 577, 238249.
Teubner, U., Kuhnle, G. & Schafer, F.P. (1991). Soft X-ray spectra produced by subpicosecond laser-double-pulses. Appl. Phys. Lett. 59, 26722674.
Von Der Linde, D., Sokolowski-Tinten, K., Blome, CH., Dietrich, C., Zhou, P., Tarasevitch, A., Cavalleri, A., Siders, C.W., Barty, C.P.J., Squier, J., Wilson, K.R., Uschmann, I. & Forster, E. (2001). Generation and application of ultrashort X-ray pulses. Laser Part. Beams 19, 1522.
Wong, C.S., Woo, H.J. & Yap, S.L. (2007). A low energy tunable pulsed X-ray source based on the pseudospark electron beam. Laser Part. Beams 25, 497502.
Workman, J. & Kyrala, G.A. (2001 a). X-ray yield scaling studies performed on the OMEGA laser. Rev. Sci. Instrum. 72, 678681.
Workman, J. & Kyrala, G.A. (2001 b). Scaling of X-ray K-shell sources from laser-solid interactions. Proc. SPIE 4504, 168179.
Workman, J., Lanier, N.E. & Kyrala, G.A. (2003). Analysis of Ti K-shell emission produced from solid targets using nanosecond pulses on the TRIDENT laser facility. Rev. Sci. Instrum. 74, 21652168.
Yaakobi, B., Bourke, P., Conturie, Y., Delettrez, J., Forsyth, J.M., Frankel, R.D., Goldman, L.M., McCrory, R.L., Seka, W. & Soures, J.M. (1981). High X-ray conversion efficiency with target irradiation by a frequency tripled Nd: Glass laser. Opt. Commun. 38, 196200.


Angular distribution and conversion of multi-keV L-shell X-ray sources produced from nanosecond laser irradiated thick-foil targets

  • G.-Y. Hu (a1) (a2) (a3), J.-Y. Zhang (a2), J. Zheng (a3), B.-F. Shen (a1), S.-Y. Liu (a2), J.-M. Yang (a2), Y.-K. Ding (a2), X. Hu (a2), Y.-X. Huang (a2), H.-B. Du (a2), R.-Q. Yi (a2), A.-L. Lei (a1) and Z.-Z. Xu (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed