Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-18T01:21:28.126Z Has data issue: false hasContentIssue false

Angular distribution and conversion of multi-keV L-shell X-ray sources produced from nanosecond laser irradiated thick-foil targets

Published online by Cambridge University Press:  12 December 2008

G.-Y. Hu*
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai, China Research Center of Laser Fusion, CAEP, Mianyang, China CAS Key Laboratory of Basic Plasma Physics, Department of Modern Physics, University of Science and Technology of China, Hefei, China
J.-Y. Zhang
Affiliation:
Research Center of Laser Fusion, CAEP, Mianyang, China
J. Zheng
Affiliation:
CAS Key Laboratory of Basic Plasma Physics, Department of Modern Physics, University of Science and Technology of China, Hefei, China
B.-F. Shen
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai, China
S.-Y. Liu
Affiliation:
Research Center of Laser Fusion, CAEP, Mianyang, China
J.-M. Yang
Affiliation:
Research Center of Laser Fusion, CAEP, Mianyang, China
Y.-K. Ding
Affiliation:
Research Center of Laser Fusion, CAEP, Mianyang, China
X. Hu
Affiliation:
Research Center of Laser Fusion, CAEP, Mianyang, China
Y.-X. Huang
Affiliation:
Research Center of Laser Fusion, CAEP, Mianyang, China
H.-B. Du
Affiliation:
Research Center of Laser Fusion, CAEP, Mianyang, China
R.-Q. Yi
Affiliation:
Research Center of Laser Fusion, CAEP, Mianyang, China
A.-L. Lei
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai, China
Z.-Z. Xu
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai, China
*
Address correspondence and reprint requests to: G.Y. Hu, State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai 201800, China. E-mail: gyhu@siom.ac.cn

Abstract

An experimental study on the angular distribution and conversion of multi-keV X-ray sources produced from 2 ns-duration 527nm laser irradiated thick-foil targets on Shenguang II laser facility (SG-II) is reported. The angular distributions measured in front of the targets can be fitted with the function of f(θ) = α+ (1−α)cosβθ (θ is the viewing angle relative to the target normal), where α = 0.41 ± 0.014, β = 0.77 ± 0.04 for Ti K-shell X-ray sources (~4.75 keV for Ti K-shell), and α = 0.085 ± 0.06, β = 0.59 ± 0.07 for Ag/Pd/Mo L-shell X-ray sources (2–2.8 keV for Mo L-shell, 2.8–3.5 keV for Pd L-shell, and 3–3.8 keV for Ag L-shell). The isotropy of the angular distribution of L-shell emission is worse than that of the K-shell emission at larger viewing angle (>70°), due to its larger optical depth (stronger self-absorption) in the cold plasma side lobe surrounding the central emission region, and in the central hot plasma region (emission region). There is no observable difference in the angular distributions of the L-shell X-ray emission among Ag, Pd, and Mo. The conversion efficiency of Ag/Pd/Mo L-shell X-ray sources is higher than that of the Ti K-shell X-ray sources, but the gain relative to the K-shell emission is not as high as that by using short pulse lasers. The conversion efficiency of the L-shell X-ray sources decreases with increasing atomic numbers (or X-ray photon energy), similar to the behavior of the K-shell X-ray source.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdallah, J., Batani, D., Desai, T., Lucchini, G., Faenov, A., Pikuz, T., Magunov, A. & Narayanan, V. (2007). High resolution X-ray emission spectra from picosecond laser irradiated Ge targets. Laser Part. Beams 25, 245252.CrossRefGoogle Scholar
Arora, V., Chakera, J.A., Kumbhare, S.R., Naik, P.A., Gupta, N.K. & Gupta, P.D. (2001). Angular distribution of X-ray line radiation from laser-irradiated planar targets. Laser Part. Beams 19, 253257.CrossRefGoogle Scholar
Babonneau, D., Bonnet, L., Jacquemot, S., Bocher, J.L., Boutin, J.Y., Jadaud, J.P. & Vilette, B. (1999). X-ray conversion with PHEBUS laser. Laser Part. Beams 17, 459463.CrossRefGoogle Scholar
Back, C.A., Grun, J., Decker, C., Suter, L.J., Davis, J., Landen, O.L., Wallace, R., Hsing, W.W., Laming, J.M., Feldman, U., Miller, M.C. & Wuest, C. (2001). Efficient multi-keV underdense laser-produced plasma radiators. Phys. Rev. Lett. 87, 275003.CrossRefGoogle ScholarPubMed
Back, C.A., Grun, J., Decker, C., Suter, L.J., Davis, J., Landen, O.L., Wallace, R., Hsing, W.W., Laming, J.M., Feldman, U., Miller, M.C. & Wuest, C. (2003). Multi-keV X-ray conversion efficiency in laser-produced plasmas. Phys. Plasmas 10, 20472055.CrossRefGoogle Scholar
Batha, S.H., Procassini, R.J., Hammel, B.A., Shepard, T.D., Drake, R.P., Bradley, K.S., Estabrook, K., Hsieh, E.J., Keane, C.J., Montgomery, D.S. & Phillion, D.W. (1995). Characterization of titanium laser-produced plasmas. Phys. Plasmas 2, 37923803.CrossRefGoogle Scholar
Celliers, P., Da Silva, L.B., Dane, C.B., Mrowka, S., Norton, M., Harder, J., Hackel, L., Matthews, D.L., Fiedorowicz, H., Bartnik, A., Maldonado, J.R. & Abate, J.A. (1996). Optimization of X-ray sources for proximity lithography produced by a high average power Nd:glass laser. J. Appl. Phys. 79, 82588268.CrossRefGoogle Scholar
Chase, L.F., Jordan, W.C., Perez, J.D. & Pronko, J.G. (1977). Angular distributions of X-ray line radiation from a laser-produced plasma. Appl. Phys. Lett. 30, 137139.CrossRefGoogle Scholar
Deng, X., Liang, X., Chen, Z., Yu, W. & Ma, R. (1986). Uniform illumination of large targets using a lens array. Appl. Opt. 25, 377381.CrossRefGoogle ScholarPubMed
Dunn, J., Young, B.K.F., Osterheld, A.L., Foord, M.E., Walling, R.S. & Stewart, R.E. (1995). Spectroscopic investigations of hard X-ray emission from 120-ps laser-produced plasmas at intensities near 1017 W cm−2. Proc. SPIE 2523, 254263.CrossRefGoogle Scholar
Eidmann, K. & Schwanda, W. (1991). Conversion of laser light into soft X rays with 3-ns and 30-ps laser pulses. Laser Part. Beams 9, 551562.CrossRefGoogle Scholar
Fabbro, R., Max, C. & Fabre, E. (1985). Planar laser-driven ablation: Effect of inhibited electron thermal conduction. Phys. Fluids 28, 14631481.CrossRefGoogle Scholar
Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Gasilov, S.V., Stagira, S., Calegari, F., Nisoli, M., De Silvestri, S., Poletto, L., Villoresi, P. & Andreev, A.A. (2007). X-ray spectroscopy observation of fast ions generation in plasma produced by short low-contrast laser pulse irradiation of solid targets. Laser Part. Beams 25, 267275.CrossRefGoogle Scholar
Fiedorowicz, H. (2005). Generation of soft X-rays and extreme ultraviolet (EUV) using a laser-irradiated gas puff target. Laser Part. Beams 23, 365373.CrossRefGoogle Scholar
Filevich, J., Rocca, J.J., Jankowska, E., Hammarsten, E.C., Kanizay, K., Marconi, M.C., Moon, S.J. & Shlyaptsev, V.N. (2003). Two-dimensional effects in laser-created plasmas measured with soft-X-ray laser interferometry. Phys. Rev. E 67, 056409.CrossRefGoogle ScholarPubMed
Fournier, K.B., Constantin, C., Poco, J., Miller, M.C., Back, C.A., Suter, L.J., Satcher, J., Davis, J. & Grun, J. (2004). Efficient multi-keV X-ray sources from Ti-doped aerogel targets. Phys. Rev. Lett. 92, 165005.CrossRefGoogle ScholarPubMed
Fournier, K.B., Constantin, C., Back, C.A., Suter, L., Chung, H.-K., Miller, M.C., Froula, D.H., Gregori, G., Glenzer, S.H., Dewald, E.L. & Landen, O.L. (2006). Electron-density scaling of conversion efficiency of laser energy into L-shell X-rays. J. Quant. Spect. Rad. Tran. 99, 186198.CrossRefGoogle Scholar
Girard, F., Jadaud, J.P., Naudy, M., Villette, B., Babonneau, D., Primout, M., Depierreux, S., Miller, M.C., Kauffman, R.L., Suter, L.J., Fournier, K.B., Glenzer, S.H., Back, C., Grun, J. & Davis, J. (2004). Multi-keV X-ray conversion from prepulsed foil experiments. Proc. SPIE 5196, 220233.CrossRefGoogle Scholar
Girard, F., Jadaud, J.P., Naudy, M., Villette, B., Babonneau, D., Primout, M., Miller, M.C., Kauffman, R.L., Suter, L.J., Grun, J. & Davis, J. (2005). Multi-keV X-ray conversion efficiencies of laser-preexploded titanium foils. Phys. Plasmas 12, 092705.CrossRefGoogle Scholar
Glendinning, S.G., Amendt, P., Budil, K.S., Hammel, B.A., Kalantar, D.H., Key, M.H., Landen, O.L., Remington, B.A. & Desenne, D.E. (1995). Laser plasma diagnostics of dense plasmas. Proc. SPIE 2523, 2939.CrossRefGoogle Scholar
Glenzer, S.H., Gregori, G., Lee, R.W., Rogers, F.G., Pollaine, S.W. & Landen, O.L. (2003). Demonstration of spectrally resolved X-ray scattering in dense plasmas. Phys. Rev. Lett. 90, 175002.CrossRefGoogle ScholarPubMed
Glibert, K.M., Anthes, J.P., Gusinow, M.A. & Palmer, M.A. (1980). X-ray yields of plasmas heated by 8-nsec neodymium laser pulses. J. Appl. Phys. 51, 14491451.CrossRefGoogle Scholar
Griem, H.R. (1997) Principles of Plasma Spectroscopy. New York: Cambridge University Press.CrossRefGoogle Scholar
Higashiguchi, T., Kawasaki, K., Sasaki, W. & Kubodera, S. (2006). Enhancement of extreme ultraviolet emission from a lithium plasma by use of dual laser pulses. Appl. Phys. Lett. 88, 161502.CrossRefGoogle Scholar
Hu, G.Y., Liu, S.Y., Zheng, J., Wu, C.S., Li, J.H., Wu, S.C., Zhang, J.Y., Yang, J.M., Yang, G.H., Yi, R.Q., Du, H.B., Huang, Y.X., Hu, X. & Ding, Y.K. (2007). Efficient K-shell X-ray sources produced with titanium foils. Phys. Plasmas 14, 033103.CrossRefGoogle Scholar
Hu, G.Y., Zheng, J., Shen, B.F., Lei, A.L., Liu, S.Y., Zhang, J.Y., Yang, J.M., Yang, G.H., Ding, Y.K., Hu, X., Huang, Y.X., Du, H.B., Yi, R.Q. & Xu, Z.Z. (2008). Characterization of a multi-keV X-ray source produced by nanosecond laser irradiation of a solid target: The influence of laser focus spot and target thickness. Phys. Plasmas 15, 023103.CrossRefGoogle Scholar
Kalantar, D.H., Haan, S.W., Hammel, B.A., Keane, C.J., Landen, O.L. & Munro, D.H. (1997). X-ray backlit imaging measurement of in-flight pusher density for an indirect drive capsule implosion. Rev. Sci. Instrum. 68, 814816.CrossRefGoogle Scholar
Kauffman, R.L. (1991) X-ray radiation from laser plasma. In Handbook of Plasma Physics (Rubenchik, A.M. and S. Witkowski, S., Eds.). Amsterdam: Elsevier.Google Scholar
Kodama, R., Okada, K., Ikeda, N., Mineo, M., Tanaka, K.A., Mochizuki, T. & Yamanaka, C. (1986). Soft X-ray emission from ω0, 2ω0, and 4ω0 laser-produced plasmas. J. Appl. Phys. 59, 30503052.CrossRefGoogle Scholar
Kodama, R., Mochizuki, T., Tanaka, K.A. & Yamanaka, C. (1987). Enhancement of keV X-ray emission in laser-produced plasmas by a weak prepulse laser. Appl. Phys. Lett. 50, 720722.CrossRefGoogle Scholar
Labate, L., Cecchetti, C.A., Galimberti, M., Giulietti, A., Giulietti, D. & Gizzi, L.A. (2005). Detailed characterization of the early X-ray emission of a plasma produced by point-like laser irradiation of solid Al targets. Phys. Plasmas 12, 083101.CrossRefGoogle Scholar
Limpouch, J., Renner, O., Krousky, E., Uschmann, I., Forster, E., Kalashnikov, M.P. & Nickles, P.V. (2002). Line X-ray emission from Al targets irradiated by high-intensity variable-length laser pulses. Laser Part. Beams 20, 4349.CrossRefGoogle Scholar
Lin, Z., Deng, X., Fan, D., Wang, S., Chen, S., Zhu, J., Qian, L., Shen, X., Xu, F., Zhu, J., Ma, W., Xie, X., Zheng, Y., Zhang, W., Chen, Q., Ling, M., Huang, H. & Zhang, J. (1999). SG-II laser elementary research and precision SG-II program. Fusion Eng. Des. 44, 6166.CrossRefGoogle Scholar
Mattews, D.L., Campbell, E.M., Ceglio, N.M., Hermes, G., Kauffman, R., Koppel, L., Lee, R., Manes, K., Rupert, V., Slivinshy, V.W., Turner, R. & Ze, F. (1983). Characterization of laser-produced plasma X-ray sources for use in X-ray radiography. J. Appl. Phys. 54, 42604268.CrossRefGoogle Scholar
Max, C.E. (1982) Physics of the coronal plasma in laser fusion targets. In Laser-Plasma Interaction (Balian, R and J. C. Adam, J.C., Eds). Amsterdam: North-Holland.Google Scholar
Mead, W.C., Campbell, E.M., Estabrook, K.G., Turner, R.E., Kruer, W.L., Lee, P.H.Y., Pruett, B., Rupert, V.C., Tirsell, K.G., Stradling, G.L., Ze, F., Max, C.E. & Rosen, M.D. (1981). Laser-plasma interactions at 0.53 µm for disk targets of varying Z. Phys. Rev. Lett. 47, 12891292.CrossRefGoogle Scholar
Mead, W.C., Campbell, E.M., Estabrook, Kent, Turner, R.E., Kruer, W.L., Lee, P.H.Y., Pruett, B., Rupert, V.C., Tirsell, K.G., Stradling, G.L., Ze, F., Max, C.E., & Lasinski, B.F., (1983). Laser irradiation of disk targets at 0.53 µm wavelength. Phys. Fluids 26, 23162331.CrossRefGoogle Scholar
Mochizuki, T. & Yamanaka, C. (1986). Efficient soft X-ray generated in short wavelength laser produced plasmas. Proc. SPIE 733, 2327.CrossRefGoogle Scholar
Montgomery, D.S., Landen, O.L., Drake, R.P., Estabrook, K.G., Baldis, H.A., Bradley, S.H. & Procassini, R.J. (1994). Measurements of radial heat wave propagation in laser-produced exploding-foil plasmas. Phys. Rev. Lett. 73, 20552058.CrossRefGoogle ScholarPubMed
Pelletier, J.F., Chaker, M. & Kieffer, J.C. (1997). Soft X-ray emission produced by a sub-picosecond laser in a single- and double-pulse scheme. J. Appl. Phys. 81, 59805983.CrossRefGoogle Scholar
Peng, H.S., Zhang, X.M., Zheng, W.G., Wei, X.F., Huang, X.J., Sui, Z., Jing, F., Zhu, J., Zhu, Q.H., Wang, X.D., Zhou, K.N., Liu, L.Q., Zeng, X.M., Wang, X., Zhu, J.Q., Lin, Z.Q. & Zhang, W.Y. (2006). High-power solid-state lasers for high-energy-density physics applications at CAEP. Proc. SPIE 6344, 634402.CrossRefGoogle Scholar
Phillion, D.W. & Hailey, C.J. (1986). Brightness and duration of X-ray line sources irradiated with intense 0.53-µm laser light at 60 and 120 ps pulse width. Phys. Rev. A 34, 48864896.CrossRefGoogle Scholar
Pikuz, T.A., Faenov, A.Ya, Fraenkel, M.A., Zigler, , Flora, F., Bollanti, S., Dilazzaro, P., Letardi, T., Grilli, A., Palladino, L., Tomassetti, G., Reale, A., Reale, L., Scafati, A., Limongi, T., Bonfigli, F., Alainelli, L. & Sanchez, Del Rio M. (2002). Shadow monochromatic backlighting: Large-field high resolution X-ray shadowgraphy with improved spectral tenability. Laser Part. Beams 19, 285293.CrossRefGoogle Scholar
Primout, M. (2005). Optimization of X-ray conversion efficiency of laser preformed metallic plasma. J. X-ray Sci. Technol. 13, 2336.Google Scholar
Rafique, M.S., Khaleeq-Ur-Rahman, M., Riaz, I., Jalil, R. & Farid, N. (2008). External magnetic field effect on plume images and X-ray emission from a nanosecond laser produced plasma. Laser Part. Beams 26, 217224.CrossRefGoogle Scholar
Riley, D., Weaver, I., McSherry, D., Dunne, M., Neely, D., Notley, M. & Nardi, E. (2002 a). Direct observation of strong coupling in a dense plasma. Phys. Rev. E 66, 046408.CrossRefGoogle Scholar
Riley, D., Woolsey, N.C., McSherry, D., Khattak, F.Y. & Weaver, I. (2002 b). He-like X-ray line emission from laser irradiated sources. Plasma Sour. Sci. Technol. 11, 484491.CrossRefGoogle Scholar
Riley, D., Khattak, F.Y., Garcia Saiz, E., Gregori, G., Bandyopadhyay, S., Notley, M., Neely, D., Chambers, D., Moore, A. & Comley, A. (2007). Spectrally resolved X-ray scatter from laser-shock-driven plasmas. Laser Part. Beams 25, 465469.CrossRefGoogle Scholar
Ruggles, L.E., Porter, J.L., Rambo, P.K. Jr., Simpson, W.W., Vargas, M.F., Bennett, G.R. & Smith, I.C. (2003). Measurements of 4–10 keV X-ray production with the Z-Beamlet laser. Rev. Sci. Instrum. 74, 22062210.CrossRefGoogle Scholar
Schollmeier, M., Rodriguez Prieto, G., Rosmej, F.B., Schaumann, G., Blazevic, A., Rosmej, O.N. & Roth, M. (2006). Investigation of laser-produced chlorine plasma radiation for non-monochromatic X-ray scattering experiments. Laser Part. Beams 24, 335345.CrossRefGoogle Scholar
Schollmeier, M., Becker, S., Geissel, M., Flippo, K.A., Blazevic, A., Gaillard, S.A., Gautier, D.C., Gruner, F., Harres, K., Kimmel, M., Nurnberg, F., Rambo, P., Schramm, U., Schreiber, J., Schutrumpf, J., Schwarz, J., Tahir, N.A., Atherton, B., Habs, D., Hegelich, B.M. & Roth, M. (2008). Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices. Phys. Rev. Lett. 101, 055004.CrossRefGoogle ScholarPubMed
Scott, J.M., Beck, J.B., Batha, S.H., Barnes, C.W. & Tubbs, D.L. (2001). Radiographic image analysis of cylindrical implosion experiments (invited). Rev. Sci. Instrum. 72, 643650.CrossRefGoogle Scholar
Tahir, N.A., Udrea, S., Deutsch, C., Fortov, V.E., Grandjouan, G., Gryaznov, V., Hoffmann, D.H.H., Hulsmann, P., Kirk, M., Lomonosov, I.V., Piriz, A.R., Shutov, A., Spiller, P., Temporal, M. & Varentsov, D. (2004). Target heating in high-energy-density matter experiments at the proposed GSI FAIR facility: Non-linear bunch rotation in SIS 100 and optimization of spot size and pulse length. Laser Part. Beams 22, 485493.CrossRefGoogle Scholar
Tahir, N.A., Spiller, P., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Wouchuk, G., Deutsch, C., Fortov, V.E., Hoffmann, D.H.H. & Schmidt, R. (2007). HEDgeHOB: High-energy density matter generated by heavy ion beams at the future facility for antiprotons and ion research. Nucl. Instr. Meth. Meth. A 577, 238249.CrossRefGoogle Scholar
Teubner, U., Kuhnle, G. & Schafer, F.P. (1991). Soft X-ray spectra produced by subpicosecond laser-double-pulses. Appl. Phys. Lett. 59, 26722674.CrossRefGoogle Scholar
Von Der Linde, D., Sokolowski-Tinten, K., Blome, CH., Dietrich, C., Zhou, P., Tarasevitch, A., Cavalleri, A., Siders, C.W., Barty, C.P.J., Squier, J., Wilson, K.R., Uschmann, I. & Forster, E. (2001). Generation and application of ultrashort X-ray pulses. Laser Part. Beams 19, 1522.CrossRefGoogle Scholar
Wong, C.S., Woo, H.J. & Yap, S.L. (2007). A low energy tunable pulsed X-ray source based on the pseudospark electron beam. Laser Part. Beams 25, 497502.CrossRefGoogle Scholar
Workman, J. & Kyrala, G.A. (2001 a). X-ray yield scaling studies performed on the OMEGA laser. Rev. Sci. Instrum. 72, 678681.CrossRefGoogle Scholar
Workman, J. & Kyrala, G.A. (2001 b). Scaling of X-ray K-shell sources from laser-solid interactions. Proc. SPIE 4504, 168179.CrossRefGoogle Scholar
Workman, J., Lanier, N.E. & Kyrala, G.A. (2003). Analysis of Ti K-shell emission produced from solid targets using nanosecond pulses on the TRIDENT laser facility. Rev. Sci. Instrum. 74, 21652168.CrossRefGoogle Scholar
Yaakobi, B., Bourke, P., Conturie, Y., Delettrez, J., Forsyth, J.M., Frankel, R.D., Goldman, L.M., McCrory, R.L., Seka, W. & Soures, J.M. (1981). High X-ray conversion efficiency with target irradiation by a frequency tripled Nd: Glass laser. Opt. Commun. 38, 196200.CrossRefGoogle Scholar