Skip to main content Accessibility help

Analysis of selective vaporization behavior in laser melting of magnesium alloy by plume deposition

  • Guan Yingchun (a1) (a2), Zhou Wei (a1) (a2), Zheng Hongyu (a2), Li Zhongli (a2), Seng Hwee Leng (a3) and Hong Minghui (a4)...


Laser surface melting is one of the most important processes in laser material processing. Selective vaporization of alloying elements in laser melting offers fundamental understanding of laser processing on metallic alloys. This work provides linkage between laser melting and material properties using secondary ion mass spectrometry (SIMS) for tiny vaporized species in laser-generated plume and energy dispersive spectroscopy (EDS) for solid solution range in molten pool, both qualitatively and quantitatively (up to hundreds of micron). Silicon wafer was used to collect the generated plume. Chemical analysis was carried out on top surface and sub-surface of the deposited plume. Transport behavior as well as distribution of the vaporized species inside the plume was further proposed.


Corresponding author

Address correspondence and reprint requests to: Y.C. Guan, Nanyang Technological University, 50 Nanyang Avenue, Singapore639798. E-mail:


Hide All
Cao, X., Wallace, W., Poon, C. & Immarigeon, J.P. (2003). Research and progress in laser welding of wrought aluminum alloys. Mater. Manuf. Process 18, 122.
Cieslak, M.J. & Fuerschbach, P.W. (1988). On the weldability, composition, and hardness of pulsed and continuous Nd-YAG laser welds in aluminum-alloys 6061, 5456, and 5086. Metall. Trans. 19B, 319329.
Collur, M.M., Paul, A. & Debroy, T. (1987). Mechanism of. Alloying Element Vaporization During Laser Welding. Metall. Trans. 18B, 733740.
David, S.A. & Debroy, T. (1992). Current issues and problems in welding science. Sci. 257, 497502.
Goodall, P., Johnson, S.G. & Wood, E. (1995). Laser ablation inductively coupled plasma atomic emission spectrometry of a uranium-zirconium alloy: Ablation properties and analytical behavior. Spectro Acta Part B 50, 18231835.
Guan, Y.C., Zhou, W. & Zheng, H.Y. (2009 b). Effect of laser surface melting on corrosion behaviour of AZ91D in simulated-modified body fluid. J. Appl. Electrochem. 39, 14571464.
Guan, Y.C., Zhou, W. & Zheng, H.Y. (2009 c). Effect of Nd:YAG laser melting on surface energy of AZ91D Mg alloy. Surf. Rev. Lett. 16, 801806.
Guan, Y.C., Zhou, W., Li, Z.L. & Zheng, H.Y. (2009 a). Study on the solidification microstructure in AZ91D Mg alloy after laser surface melting. Appl. Surf. Sci. 255, 82358238.
He, X., DebRoy, T. & Fuerschbach, P.W. (2004). Composition change of stainless steel during microjoining with short laser pulse. J. Appl. Phys. 96, 45474555.
Ignat, S., Sallamand, P., Grevey, D. & Lambertin, M. (2004). WE43 and ZE41 Magnesium alloys Characterisation for Laser Applications. Appl. Surf. Sci. 225,124134.
Jandaghi, M., Parvin, P., Torkamany, M.J. & Sabbaghzadeh, J. (2009). Alloying element losses in pulsed Nd:YAG laser welding of Stainless Steel-316. J. Phys. D: Appl. Phys. 42, 205301.
Kutz, M. (2002). Handbook of Materials Selection. New York: John Wiley & Sons.
Li, Z.L., Yow, S.Z., Lui, L., Yakovlev, N.L., Sun, Y., Swenson, E.J. & Moran, P.M. (2004). SIMS study of plumes generated from laser ablation of polymers. Appl. Phys. A 78, 611616.
Matsuta, H., Naeem, T.M. & Wagatsuma, K. (2004). Effect of laser wavelength on the selective vaporization of Cu-Zn alloy in laser ablation at low pressure. ISIJ Internation. 44, 220222.
Mochizuki, T., Sakashita, A., Tsuji, T., Iwata, H., Ishibashi, Y. & Gunji, N. (1991). Flow injection technique for determination of thallium, lead and bismuth in nickel-base alloys by inductively coupled plasma mass spectrometry. Anal. Sci. 7, 479481.
Moon, D.W. & Metzbower, E.A. (1983). Laser-beam welding of aluminum alloy-5456. Welding J. 62, S53S58.
Song, G.L. (2010). Corrosion Behavior of Mg Alloys and Protection Techniques. Cambridge: CRC Press.
Stasic, J., Gakovic, B., Krmpot, A., Pavlovic, V., Trtica, M. & Jelenkovic, B. (2009). Nickel-based super-alloy Inconel 600 morphological modifications by high repetition rate femtosecond Ti:sapphire laser. Laser Part. Beams 27, 699707.
Steen, W.M. (2003). Laser Material Processing. London: Springer, London.
Willmott, P.R. & Huber, J.R. (2000). Pulsed laser vaporization and deposition. Rev. Mod. Phys. 72, 315328.
Witte, F. (2010). The history of biodegradable magnesium implants: A review. Acta Biomater. 6, 16801692.
Yoo, J.H., Jeong, S.H., Greif, R. & Russo, R.E. (2000). Explosive change in crater properties during high power nanosecond laser ablation of silicon. J. Appl. Phys. 88, 16381649.
Zhang, L.C., Klemm, D., Eckert, J., Haod, Y.L. & Sercombea, T.B. (2011). Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy. Scrip. Mater. 65, 2124.
Zhao, H. & Debroy, T. (2001). Weld metal composition change during conduction mode laser welding of aluminum alloy 5182. Metall. Trans. 32B, 163–72.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed