Skip to main content Accessibility help
×
Home

X-ray coherent mirage: Generation of phase – matched coherent point source in plasma media by propagated X-ray laser seeded beam

Published online by Cambridge University Press:  30 May 2016


A.Ya. Faenov
Affiliation:
Institute for Academic Initiatives, Osaka University, Suita 565-0871, Japan Joint Institute for High Temperatures, Russian Academy of Science, Moscow 125412, Russia
T.A. Pikuz
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Science, Moscow 125412, Russia Graduate School of Engineering and Photon Pioneers center, Osaka University, Suita, Osaka 565-087 Japan
S.A. Magnitskiy
Affiliation:
Physical Department, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
N. Nagorskiy
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Science, Moscow 125412, Russia
M. Tanaka
Affiliation:
Kansai Photon Research Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
M. Ishino
Affiliation:
Kansai Photon Research Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
M. Nishikino
Affiliation:
Kansai Photon Research Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
M. Kando
Affiliation:
Kansai Photon Research Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
R. Kodama
Affiliation:
Institute for Academic Initiatives, Osaka University, Suita 565-0871, Japan Graduate School of Engineering and Photon Pioneers center, Osaka University, Suita, Osaka 565-087 Japan
Y. Kato
Affiliation:
The Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka 431-1202, Japan
T. Kawachi
Affiliation:
Kansai Photon Research Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
Corresponding
E-mail address:

Abstract

The overview of the recent results for discovery and investigations of a very exotic phenomenon – optical mirage in the X-ray spectral range – is presented. It was found that the mirage could be created in the form of coherent virtual point source, emerging in the vicinity of the second plasma in two-stage oscillator-amplifier X-ray laser. The X-ray source-mirage, rigidly phased with the initial radiation of generator, occurs only when amplification takes place in the amplifier plasma and leads to the appearance of the interference pattern in the form of concentric rings in the spatial profile of the output X-ray laser beam. The equation describing the emergence of X-ray mirage was found, numerical solution of which shows that its formation is similar to that of the optical mirages observed at propagation of light rays through an inhomogeneously heated air. Obtained results have already demonstrated novel comprehension into the physical nature of amplification of X-ray radiation, opening additional opportunities for X-ray interferometry, holography, and other applications, which require multiple rigidly phased sources of coherent radiation.


Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

Avrorin, E.N., Lykov, V.A., Loboda, P.A. & Politov, V.YU. (1997). Review of theoretical works on X-ray laser research performed at RFNC – VNIITF. Laser Part. Beams 15, 315.CrossRefGoogle Scholar
Baer, A., Schwob, J.L., Eliezer, S., Henis, Z. & Eliezer, S. (1996). X-ray laser scheme driven by two laser pulses. Laser Part. Beams 14, 625630.CrossRefGoogle Scholar
Berrill, M., Alessi, D., Wang, Y., Domingue, S.R., Martz, D.H., Luther, B.M., Liu, Y. & Rocca, J.J. (2010). Improved beam characteristics of solid-target soft x-ray laser amplifiers by injection seeding with high harmonic pulses. Opt. Lett. 35, 23172319.CrossRefGoogle ScholarPubMed
Born, M. & Wolf, E. (1980). Principles of Optics. Oxford, New York: Pergamon Press.Google Scholar
Ceglio, N.M. (1991). X-ray optics for X-ray laser research applications. Laser Part. Beams 9, 7190.CrossRefGoogle Scholar
Daido, H. (2002). Review of soft X-ray laser researches and developments. Rep. Prog. Phys. 65, 15131576.CrossRefGoogle Scholar
Depresseux, A., Oliva, E., Gautier, J., Tissandier, F., Nejdl, J., Kozlova, M., Maynard, G., Goddet, J. P., Tafzi, A., Lifschitz, A., Kim, H. T., Jacquemot, S., Malka, V., Ta Phuoc, K., Thaury, C., Rousseau, P., Iaquaniello, G., Lefrou, T., Flacco, A., Vodungbo, B., Lambert, G., Rousse, A., Zeitoun, P. & Sebban, S. (2015). Table-top femtosecond soft X-ray laser by collisional ionization gating. Nat. Photon. 9, 817822.CrossRefGoogle Scholar
Ecker, B., Oliva, E., Aurand, B., Hochhaus, D. C., Neumayer, P., Zhao, H., Zielbauer, B., Cassou, K., Daboussi, S., Guilbaud, O., Kazamias, S., Le, T.T.T., Ros, D., Zeitoun, P. & Kühl, T. (2012). Gain lifetime measurement of a Ni-like Ag soft X-ray laser. Opt. Express 20, 25391.CrossRefGoogle ScholarPubMed
Elton, R.C. (1990). X-ray Lasers. London, UK: Academic Press Limited.Google Scholar
Jaegle, P. (2006). Coherent Sources of XUV Radiation. Springer.Google Scholar
Kim, C.M., Jamulewicz, K.A. & Lee, J. (2011). Pulse buildup from noise and intrinsic polarization of plasma-based X-ray lasers. Phys. Rev. A 84, 013834.CrossRefGoogle Scholar
Knowlton, A.A. (1919). An unusual mirage. Science 50, 328.CrossRefGoogle ScholarPubMed
Larroche, O., Ros, D., Klisnick, A., Sureau, A., Moller, C. & Guennou, H. (2000). Maxwell-Bloch modeling of X-ray-laser-signal buildup in single- and double-pass configurations. Phys. Rev. A 62, 043815.CrossRefGoogle Scholar
Le Pape, S. & Zeitoun, P.H. (2001). Modeling of the double pass X-ray laser: Effects on its focalization. Laser Part. Beams 19, 137139.CrossRefGoogle Scholar
Magnitskiy, S.A., Nagorskiy, N.M., Faenov, A., Pikuz, T., Tanaka, M., Ishino, M., Nishikino, M., Fukuda, Y., Kando, M., Kawachi, T. & Kato, Y. (2013). Observation and theory of X-ray mirages. Nat. Commun. 4, 1936.CrossRefGoogle ScholarPubMed
Nishikino, M., Hasegawa, N., Kawachi, T., Yamatani, H., Sukegawa, K. & Nagashima, K. (2008). Characterization of a high- brilliance soft X-ray laser at 13.9 nm by use of an oscillator amplifier configuration. App. Opt. 47, 11291134.CrossRefGoogle ScholarPubMed
Nishikino, M., Ochi, Y., Hasegawa, N., Kawach, I.T., Yamatani, H., Ohba, T., Kaihori, T. & Nagashima, K. (2009). Demonstration of a highly coherent 13.9 nm X-ray laser from a silver tape target. Rev. Sci. Instrum. 80, 116102.CrossRefGoogle ScholarPubMed
Ohnishi, N., Nishikino, M. & Sasaki, A. (2006). Numerical analysis of plasma medium of transient collisional exrefd X-ray laser. J. Phys. IV France 113, 11931195.CrossRefGoogle Scholar
Oliva, E., Fajardo, M., Li, L., Pittman, M., Le, T.T.T., Gautier, J., Lambert, G., Velarde, P., Ros, D., Sebban, S. & Zeitoun, P.H. (2012). A proposal for multi-tens of GW fully coherent femtosecond soft X-ray lasers. Nat. Photon. 6, 764767.CrossRefGoogle Scholar
Pert, G.J. (1994). Computational modelling for X-ray lasers. Laser Part. Beams 12, 209222.CrossRefGoogle Scholar
Pikuz, T., Faenov, A., Magnitskiy, S., Nagorskiy, N., Tanaka, M., Ishino, M., Nishikino, M., Fukuda, Y., Kando, M., Kato, Y. & Kawachi, T. (2014). Coherent X-ray mirage: Discovery and possible applications. High Power Laser Sci. Eng. 2, e12.CrossRefGoogle Scholar
Raman, C.V. & Pancharatnam, S. (1959). The optics of mirages. Proc. Ind. Acad. Sci. A 49, 251261.CrossRefGoogle Scholar
Suckewer, S. & Jaegle, P. (2009). X-ray laser: Past, present, and future. Laser Phys. Lett. 6, 411436.CrossRefGoogle Scholar
Tallents, G.J., Abou-Ali, Y., Edwards, M., King, R., Pert, G.J., Pestehe, S.J., Strati, F., Lewis, C.L.S., Keenan, R., Topping, S., Klisnick, A., Guilbaud, O., Ros, D., Clarke, R., Notley, M. & Neely, D. (2002). A review of X-ray laser development at Rutherford Appleton Laboratory. Laser Part. Beams 20, 201209.CrossRefGoogle Scholar
Volllmer, M. (2009). Mirrors in the air: Mirages in nature and in the laboratory. Phys. Educ. 44, 165174.CrossRefGoogle Scholar
Wang, Y., Granados, E., Pedaci, F., Alessi, D., Luther, B., Berrill, M. & Rocca, J. J. (2008). Phase-coherent, injection-seeded, table-top soft-X-ray lasers at 18.9 nm and 13.9 nm. Nat. Photon. 2, 9498.CrossRefGoogle Scholar
Wang, Y., Wang, S., Oliva, E., Li, L., Berrill, M., Yin, L., Nejdl, J., Luther, B.M., Proux, C., Le, T.T.T., Dunn, J., Ros, D., Zeitoun, P.H. & Rocca, J.J. (2014). Gain dynamics in a soft-X-ray laser amplifier perturbed by a strong injected X-ray field. Nat. Photon. 8, 381384.CrossRefGoogle Scholar
Zeitoun, P., Faivre, G, Sebban, S., Mocek, T., Hallou, A., Fajardo, M., Aubert, D., Balcou, P.H., Burgy, F., Douillet, D., Kazamias, S., De Lachèze-Murel, G., Lefrou, T., Le Pape, S., Mercère, P., Merdji, H., Morlens, A.S., Rousseau, J. P. & Valentin, C. (2004). A high-intensity highly coherent soft X-ray femtosecond laser seeded by a high harmonic beam. Nature 431, 426.CrossRefGoogle ScholarPubMed
Zimmer, D., Zielbauer, B., Pittman, M., Guilbaud, O., Habib, J., Kazamias, S., Ros, D., Bagnoud, V. & Kühl, T. (2010). Optimization of a tabletop high-repetition-rate soft x-ray laser pumped in double-pulse single-beam grazing incidence. Opt. Lett. 35, 450.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 5
Total number of PDF views: 47 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 1st December 2020. This data will be updated every 24 hours.

Hostname: page-component-79f79cbf67-nqzjh Total loading time: 1.493 Render date: 2020-12-01T19:49:02.986Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Tue Dec 01 2020 19:06:00 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

X-ray coherent mirage: Generation of phase – matched coherent point source in plasma media by propagated X-ray laser seeded beam
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

X-ray coherent mirage: Generation of phase – matched coherent point source in plasma media by propagated X-ray laser seeded beam
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

X-ray coherent mirage: Generation of phase – matched coherent point source in plasma media by propagated X-ray laser seeded beam
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *