Skip to main content Accessibility help
×
Home

Target technology development for the research of high energy density physics and inertial fusion at the RFNC–VNIIEF

Published online by Cambridge University Press:  08 December 2009


V.M. Izgorodin
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
F.M. Abzaev
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
A.P. Balyaev
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
A.V. Bessarab
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
I.N. Cherkesova
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
V.V. Chulkov
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
D.Yu. Fenoshin
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
S.G. Garanin
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
V.G. Gogolev
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
A.G. Golubinsky
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
Yu.V. Ignat'ev
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
D.A. Irinichev
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
A.E. Lachtikov
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
A.P. Morovov
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
V.V. Nazarov
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
G.P. Nikolaev
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
A.P. Pepelyaev
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
A.V. Pinegin
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
I.M. Rojz
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
V.N. Romaev
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
E.Yu. Solomatina
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
M.G. Vasin
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
A.V. Veselov
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
Corresponding
E-mail address:

Abstract

Results in some directions of the target technology for research on high energy density and laser fusion at the Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics for the last three years are presented. The results of development of optical and X-ray methods of characterization and manufacturing techniques of targets for studying the equation-of-state at high pressures and the condensed rare gas targets for the influence of pulse-repeated laser irradiation are given.


Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below.

References

Aleksandrova, I.V., Belolipeskiy, A.A., Koresheva, E.R. & Tolokonnikov, S.M. (2008). Survivability of fuel laers with a different structure under conditions of the environmental effects: Physical concepts and modeling results. Laser Part. Beams 26, 643648.Google Scholar
Altshul, A.D., Zhivotovsky, L.S. & Ivanov, L.P. (1987). Hydraulics and Aerodynamics. Moscow: Stroyizdat.Google Scholar
Andramanova, Yu.V., Veselov, A.V., Zhidkov, N.V., Ivanin, I.A., Ignat'ev, Yu.V., Izgorodin, V.M., Kirillov, G.A., Komleva, G.V., Makarov, M.Yu., Medvedev, E.F., Moroovov, A.P., Nikolaev, G.P., Pinegin, A.V., Romaev, V.N., Solomatina, E.Yu., Tatsenko, M.Yu., Tenyaev, B.N., Cherkesova, I.N. & Yukhimchuk, A.A. (1999). The technology of indirectly irradiated targets for inertial fusion research at the Russian Federal Nuclear Center-VNIIEF. Proc. First Inter. Conf. Inertial Fusion Sciences and Applications, pp. 891896. Paris: Elsevier.Google Scholar
Andreev, N.F., Bespalov, V.I., Bredikhin, V.I., Garanin, S.G., Ginsburg, V.N., Dvorkin, K.L., Katin, V.E., Korytin, A.I., Lozhkarev, V.V., Palashov, O.V., Rukavishnikov, N.N., Sergeev, A.M., Sukharev, S.A., Freidman, G.I., Khazanov, E.A. & Yakovlev, I.V. (2004). The new scheme of petawatt laser on the basis of non-degenerate parametrical amplification chirped impulses in crystals. Rus. Phys. JETP Lett. 79, 178182.Google Scholar
Annenkov, V.I., Bagretsov, V.A., Bezuglov, V.G., Vinogradskii, L.M., Gaidash, V.A., Galakhov, I.V., Gasheev, A.S., Guzov, I.P., Zadorozhnyi, V.I., Eroshenko, V.A., Il'in, A.Yu., Kargin, V.A., Kirillov, G.A., Kochemasov, G.G., Krotov, V.A., Kuz'michev, Yu.P., Lapin, S.G., L'vov, L.V., Mochalov, M.R., Murugov, V.M., Osin, V.A., Pankratov, V.I., Pegoev, I.N., Punin, V.T., Ryadov, A.V., Senik, A.V., Sobolev, S.K., Khudikov, N.M., Khrustalev, V.A., Chebotar', V.S., Cherkesov, N.A. & Shemyakin, V.I. (1991). A pulsed “Iskra-5” laser with the power of 120 TW. Sov. Quan. Electron 18, 536537.Google Scholar
Bethe, Y.A. & Ashkin, J. (1953). Passage of radiation through substance. In Experimental Nuclear Physics (Segre, E., Eds.), Vol. 1, pp. 143215. New York: xxxx.Google Scholar
Beznasyuk, N.N., Galakhov, I.V., Garanin, S.G., Grigorovich, S.G., Eroshenko, V.A., Il'kaev, R.I., Kirillov, G.A., Kochemasov, , Murugov, V.M., Rukavishnikov, N.N. & Sukharev, S.A. (2002). High-power neodimium phosphate glass laser facility “Luch” – prototype of a module of the “Iskra-6” facility. Proc. Russian Federal Nuclear Center-VNIIEF 3, 232247.Google Scholar
Borisenko, N.G., Bugrov, A.E., Burdonskiy, I.N., Fasakhov, I.K., Gavrilov, V.V., Goltsov, A.Y., Gromov, A.I., Khalenkov, A.M., Kovalskii, N.G., Merkuliev, Y.A., Petryakov, V.M., Putilin, M.V., Yankovskii, G.M. & Zhuzhukalo, E.V. (2008). Physical processes in laser interaction with porous low-density materials. Laser Part. Beams 26, 537543.Google Scholar
Chatain, D., Perin, J.P., Bonnay, P., Bouleau, E., Chichoux, M., Communal, D., Manzagol, J., Viargues, F., Brisset, D., Lamaison, V. & Paquignon, G. (2008). Cryogenic systems for inertial fusion energy. Laser Part. Beams 26, 517523.Google Scholar
Cook, R. (1994). Production of hollow microspheres for inertial confinement fusion experiments. Proc MRS symp. 372, 101112.Google Scholar
Cook, R.C., Kozioziemski, B.J., Nikroo, A., Wilkens, H.L., Bhandarkar, S., Forsman, A.C., Haan, S.W., Hoppe, M.L., Huang, H., Mapoles, E., Moody, J.D., Sater, JD., Seugling, R.M., Stephens, R.B., Takagi, M. & Xu, H.W. (2008). National Ignition Facility target design and fabrication. Laser Part. Beams 26, 479487.Google Scholar
Cormer, S.B. (1980). The photo dissociation lasers for dirigible fusion. Izvestia AN SSSR, ser. Phys. 44, 20022017.Google Scholar
de Groot, Peter & Colonna de Lega, X., Kramer, J. & Turzhitsky, M. (2002). Determination of fringe order in white-light interference microscopy. Appl. Opt. 41, 4571.Google Scholar
de Groot, Peter & Colonna de Lega, X. (2004). Signal modeling for low-coherence height-scanning interference microscopy. Appl. Opt. 43, 4821.Google Scholar
Deck, L. & de Groot, Peter (1994). High-speed noncontact profiler based on scanning white-light interferometry. Appl. Opt. 33, 7334.Google Scholar
Diefendorff, K. (2000). Extreme Lithography. Microdesign Resources Microprocessor Report, June 19.Google Scholar
Fernandez, J.C., Hegelich, B.M., Cobble, J.A., Flippo, K.A., Letzring, S.A., Johnson, R.P., Gautier, D.C., Shimada, T., Kyrala, G.A., Wang, Y.Q., Wetteland, C.J. & Schreiber, J. (2005). Laser-ablation treatment of short-pulse laser targets: Toward an experimental program on energetic-ion interactions with dense plasmas. Laser Part. Beams 23, 267273.Google Scholar
Freischlad, K. & Koliopoulos, C.L. (1990). Fourier description of digital phase-measuring interferometry. J. Opt. Soc. Am. A 7, 542551.Google Scholar
Frenkel, Ja.I. (1975). The Kinetic Theory of Liquids. Leningrad: Nauka.Google Scholar
Gaidash, V.A., Kirillov, G.A., Cormer, S.B., Lapin, S.G., Shemyakin, V.I. & Shurygin, V.K. (1974). The C3F7J laser facility with energy of radiation of 20 J and impulse duration of 3 ns. Sov. Phys. JETP Lett. 20, 243246.Google Scholar
Galakhov, I.V., Garanin, S.G., Eroshenko, V.A., Kirillov, G.A., Kochemasov, G.G., Murugov, V.M., Rukavishnikov, N.N. & Sukharev, S.A. (1999). Concept of the Iskra-6 Nd-laser facility. Fusion Engin. Des. 44, 5156.Google Scholar
Gunn, G.J., Yakovlev, V.I., Prudkovskij, B.A., Galkin, A.M., Ryzhov, A.F., Golovin, M.F. & Brunilin, A.I. (1974). Pressing of Aluminum Alloys (Mathematical Modeling and Optimization). Moscow: Metallurgy.Google Scholar
Hansson, , Bjorn, A.M., Rymell, L., Berglund, M., Hemberg, O., Janin, E., Thoresen, J., Mosesson, S., Wallin, J. & Herz, H. (2002). Status of the liquid-xenon-jet laser-plasma source for EUV lithography. Proc. SPIE. 4688, 102.Google Scholar
Huang, T. & Parrich, W. (1986). X-ray fluorescence analysis of multplei–Layer thin films. Adv. X-ray anal. 29, 395402.Google Scholar
Ignat'ev, Yu.V., Vasin, M.G., Veselov, A.V., Izgorodin, V.M., Lakhtikov, A.E. & Moroovov, A.P. (2002). Measurement of argon in the laser fusion targets. Proc. SPIE 5228, 651655.Google Scholar
Il'kaev, R.I. & Garanin, S.G. (2006). Investigation of the fusion problem on powerful laser installations. Vestnik RAN 76, 503513.Google Scholar
Koenig, M., Bondenne, J.M., Batini, D., Benuzzi, A., Bossi, S., Temporal, M. & Atzeni, S. (1995). Relative consistency of equations of state by laser driven shock waves. Phys. Rev. Lett. 74, 2260.Google Scholar
Koresheva, E.R., Aleksandrova, I.V., Koshelev, E.L., Nikitenko, A.I., Timasheva, T.P., Tolokonnikov, S.M., Belolipetskiy, A.A., Kapralov, V.G., Sergeev, V.T., Blazevic, A., Weyrich, K., Varentsov, D., Tahir, N.A., Udrea, S. & Hoffmann, D.H.H. (2009). A study on fabrication, manipulation and survival of cryogenic targets required for the experiments at the Facility for Antiproton and Ion Research: FAIR. Laser Part. Beams 27, 255272.Google Scholar
Krasnikov, V.F. (1976). Technology of miniature manufactures. Moscow: Mashinostroenie.Google Scholar
Krause, M.O. (1979). Atomic radiative and radiationless yields for K and L shells. J. Phys. Chem. Ref. Data 8, 307.Google Scholar
Laguiton, D. & Parrich, W. (1977). Simultaneous determination of cmposition and mass thickness of thin films by quantitative X-ray fluorescence analysis. Anal. Chem. 49, 11521156.Google Scholar
Mantler, M. (1986). X-ray fluorescence analysis of multiple–layer films. Anal. Chim. Acta. 188, 2535.Google Scholar
Mantler, M. (1987). Advances in fundamental parameter methods for quantitative XRFA. Advan. X-Ray Anal. 30, 97104.Google Scholar
Matsuyama, M., Murai, T. & Watanabe, K. (2002). Quantitative measurement of surface tritium by (-ray-induced X-ray spectrometry. Fusion Sci. Techn. 41, 505.Google Scholar
Meyertervehn, J., Witkowski, S., Bock, R., Hoffmann, D.H.H., Hofmann, I., Muller, R.W., Arnold, R. & Mulser, P. (1990). Accelerator and target studies for heavy-ion fusion at the gesellschaft-fur-schwerionenforschung. Phys. Fluids B 2, 13131317.Google Scholar
Mukhin, K.N. (1974). Experimental Nuclear Physicists. Moscow: Aтомиздат.Google Scholar
Nazarov, V.V. (1991). Simultaneous definition of thickness and element structure of a material by means of a X-ray fluorescent method. Zavodskaya Lab. 57, 2729.Google Scholar
Nemets, О.F. & Hofman, J.V. (1975). Manual on Nuclear Physics. Kiev: Naukova Dumka.Google Scholar
Pavlova, L.A., Belozerov, O.Yu., Paradina, L.F. & Suvorov, L.F. (2000). The X-ray Electron Probe Analysis of Microobjects. Novosibirsk: Nauka.Google Scholar
Pratt, R.H., Tseng, H.K., Lee, C.M. & Lynn, K. (1977). Bremsstrahlung energy spectra from electrons kinetic energy 1 keV ≤ T1 ≥ 2000 keV incident on neutral atoms 2 ≤ Z ≥ 92. Atomic Data Nuc. Data Tables 20, 175.Google Scholar
Reed, S.J.B. (1975). Electron Microprobe Analysis. Cambridge: Cambridge University Press.Google Scholar
Samoilovich, G.S. (1990). Hydro-Gasdinamics. Moscow: Mashinostroenie.Google Scholar
Shmayda, C.R., Shmayda, W.T. & Kherani, N.P. (2002). Monitoring tritium activity on surfaces: Recent development. Fusion Sci. Techn. 41, 500.Google Scholar
Sinclair, M.B., de Boer, M.P. & Corwin, A.D. (2005). Long-working-distance incoherent-light interference microscope. Appl. Opt. 44, 7714.Google Scholar
Tahir, N.A., Kim, V.V., Matvechev, A.V., Ostrik, A.V., Shutov, A.V., Lomonosov, I.V., Piriz, A.R., Cela, J.J.L. & Hoffmann, D.H.H. (2008). High energy density and beam induced stress related issues in solid graphite Super-FRS fast extraction targets. Laser Part. Beams 26, 273286.Google Scholar
Vasin, M.G., Ignat'ev, Yu.V., Lachtikov, A.E., Morovov, A.P., Nazarov, V.V. & Trahtenberg, L.I. (2007). X-ray fluorescence analysis with sample excitation using radiation from secondary target. X-ray Spectro. 36, 270274.Google Scholar
Veselov, A.V., Drozhin, V.S., Druzhinin, A.A., Izgorodin, V.M., Ilyushechkin, B.F., Kirillov, G.A., Komleva, G.V., Korochkin, A.M., Medvedev, E.F., Nikolaev, G.P., Pikulin, I.V., Pinegin, A.V., Punin, V.T., Romaev, V.N., Sumatokhin, V.L., Tarasova, N.N., Tachyaev, G.V. & Cherkesova, I.N. (1995). ICF target technology at the Russian Federal Nuclear Center. Fusion Techn. 28, 18381843.Google Scholar
Veselov, A.V., Dudin, A.V., Komleva, G.V. & Pukhov, Y.D. (1981). The interferometric method of measurement of gas quantity in fusion targets. Sov. Quan. Electr. 8, 11111113.Google Scholar
Weinstein, B.W. & Weir, J.T. (1980). Measurement of tracer elements in inertial fusion target fuel. J. Appl. Phys. 51, 56045609.Google Scholar
Yang, H., Nagai, K., Nakai, N. & Norimatsu, T. (2008). Thin shell aerogel fabrication for FIREX-I targets using high viscosity (phloroglucinol carboxylic acid)/formaldehyde solution. Laser Part. Beams 26, 449453.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 1
Total number of PDF views: 13 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 4th December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-zsvsw Total loading time: 0.369 Render date: 2020-12-04T02:53:54.298Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Fri Dec 04 2020 01:59:06 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Target technology development for the research of high energy density physics and inertial fusion at the RFNC–VNIIEF
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Target technology development for the research of high energy density physics and inertial fusion at the RFNC–VNIIEF
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Target technology development for the research of high energy density physics and inertial fusion at the RFNC–VNIIEF
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *