Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T08:22:50.678Z Has data issue: false hasContentIssue false

Progress in proton radiography for diagnosis of ICF-relevant plasmas

Published online by Cambridge University Press:  17 June 2010

M. Borghesi*
Affiliation:
Centre for Plasma Physics, School of Mathematics and Physics, The Queen's University of Belfast, Belfast, United Kingdom
G. Sarri
Affiliation:
Centre for Plasma Physics, School of Mathematics and Physics, The Queen's University of Belfast, Belfast, United Kingdom
C.A. Cecchetti
Affiliation:
Centre for Plasma Physics, School of Mathematics and Physics, The Queen's University of Belfast, Belfast, United Kingdom Istituto per i Processi Chimico Fisici, Consiglio Nazionale della Ricerca, Pisa, Italy
I. Kourakis
Affiliation:
Centre for Plasma Physics, School of Mathematics and Physics, The Queen's University of Belfast, Belfast, United Kingdom
D. Hoarty
Affiliation:
AWE plc, Aldermaston, Reading, Berkshire, United Kingdom
R.M. Stevenson
Affiliation:
AWE plc, Aldermaston, Reading, Berkshire, United Kingdom
S. James
Affiliation:
AWE plc, Aldermaston, Reading, Berkshire, United Kingdom
C.D. Brown
Affiliation:
AWE plc, Aldermaston, Reading, Berkshire, United Kingdom
P. Hobbs
Affiliation:
AWE plc, Aldermaston, Reading, Berkshire, United Kingdom
J. Lockyear
Affiliation:
AWE plc, Aldermaston, Reading, Berkshire, United Kingdom
J. Morton
Affiliation:
AWE plc, Aldermaston, Reading, Berkshire, United Kingdom
O. Willi
Affiliation:
Institut für Laser und Plasmaphysik, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
R. Jung
Affiliation:
Institut für Laser und Plasmaphysik, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
M. Dieckmann
Affiliation:
ITN, Linkoping University, Norrkoping, Sweden
*
Address correspondence and reprint requests to: M. Borghesi, Department of Physics and Astronomy, The Queen's University of Belfast, Belfast BT7 1NN, United Kingdom. E-mail: m.borghesi@qub.ac.uk

Abstract

Proton radiography using laser-driven sources has been developed as a diagnostic since the beginning of the decade, and applied successfully to a range of experimental situations. Multi-MeV protons driven from thin foils via the Target Normal Sheath Acceleration mechanism, offer, under optimal conditions, the possibility of probing laser-plasma interactions, and detecting electric and magnetic fields as well as plasma density gradients with ~ps temporal resolution and ~ 5–10 µm spatial resolution. In view of these advantages, the use of proton radiography as a diagnostic in experiments of relevance to Inertial Confinement Fusion is currently considered in the main fusion laboratories. This paper will discuss recent advances in the application of laser-driven radiography to experiments of relevance to Inertial Confinement Fusion. In particular we will discuss radiography of hohlraum and gasbag targets following the interaction of intense ns pulses. These experiments were carried out at the HELEN laser facility at AWE (UK), and proved the suitability of this diagnostic for studying, with unprecedented detail, laser-plasma interaction mechanisms of high relevance to Inertial Confinement Fusion. Non-linear solitary structures of relevance to space physics, namely phase space electron holes, have also been highlighted by the measurements. These measurements are discussed and compared to existing models.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borghesi, M., Mackinnon, A.J., Campbell, D.H., Hicks, D.G., Kar, S., Patel, P.K., Price, D., Romagnani, L., Schiavi, A. & Willi, O. (2004). Multi-MeV proton source investigations in ultraintense laser-foil interactions. Phys. Rev. Lett. 92, 055003.CrossRefGoogle ScholarPubMed
Borghesi, M., Kar, S., Romagnani, L., Toncian, T., Antici, P., Audebert, P., Brambrink, E., Ceccherini, F., Cecchetti, C.A., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Lyseikina, T., Jung, R., Macchi, A., Mora, P., Osterholtz, J., Schiavi, A. & Willi, O. (2007). Impulsive electric fields driven by high-intensity interactions. Laser Part. Beams 25, 161.CrossRefGoogle Scholar
Bujarbarua, S. & Schamel, H. (1981). Theory of finite-amplitude electron and ion holes. J. Plasma Phys. 25, 515.CrossRefGoogle Scholar
Califano, F. & Lontano, M. (2005). Electron hole generation and propagation in an inhomogeneous collisionless plasma. Phys Rev Lett. 95, 245002.CrossRefGoogle Scholar
Canaud, B., Fortin, X., Garaude, F., Meyer, C. & Philippe, F. (2004). Progress in direct-drive fusion studies for the laser megajoule. Laser Part. Beams 22, 109.CrossRefGoogle Scholar
Charles, C. (2007). A recent review of laboratory double layer experiments. Plasma Sour. Sci. Technol. 16, R1.CrossRefGoogle Scholar
Chatain, D., Perin, J.P., Bonnay, P., Bouleau, E., Chichoux, M., Communal, D., Manzagol, J., Viargues, F., Brisset, D., Lamaison, V. & Paquignon, G. (2008). Cryogenic systems for inertial fusion energy. Laser Part. Beams 26, 517.CrossRefGoogle Scholar
Cook, R.C., Kozioziemski, B.J., Nikroo, A., Wilkens, H.L., Bhandarkar, S., Forsman, A.C., Haan, S.W., Hoppe, M.L., Huang, H., Mapoles, E., Moody, J.D., Sater, J.D., Seugling, R.M., Stephens, R.B., Takagi, M. & Xu, H.W. (2008). National Ignition Facility target design and fabrication. Laser Part. Beams 26, 479.CrossRefGoogle Scholar
Dempsey, J.F., Low, D.A., Mutic, S., Markman, J., Kirov, A.S., Nussbaum, G.H. & Williamson, J.F. (2000). Validation of a precision radiochromic film dosimetry system for quantitative two-dimensional imaging of acute exposure dose distributions. Med. Phys. 27, 24622475.CrossRefGoogle ScholarPubMed
Dewald, E.L., Glenzer, S.H., Landen, O.L., Suter, L.J., Jones, O.S., Schein, J., Froula, D., Divol, L., Campbell, K., Schneider, M.S., Holder, J., Wmcdonald, J., Niemann, C., Mackinnon, A.J. & Hammel, B.A. (2005). First laser–plasma interaction and hohlraum experiments on the national ignition facility. Plasma Phys. Contr. Fusion 47, B405B417.CrossRefGoogle Scholar
Divol, L., Rberger, L., Meezan, N.B., Froula, D.H., Dixit, S., Suter, L.J. & Glenzer, S.H. (2008). Three-dimensional modeling of stimulated Brillouin scattering in ignition-scale experiments. Phys. Rev. Lett. 100, 255001.CrossRefGoogle ScholarPubMed
Drake, J.F., Swisdak, M., Cattell, C., Shay, M.A., Rogers, B.N. & Zeiler, A. (2003). Formation of electron holes and particle energization during magnetic reconnection. Sci. 299, 873.CrossRefGoogle ScholarPubMed
Eliasson, B. & Shukla, P.K. (2006). Formation and dynamics of coherent structures involving phase-space vortices in plasmas. Phys. Rep. 422, 225.CrossRefGoogle Scholar
Epperlein, E.M. (1990). Kinetic theory of laser filamentation in plasmas. Phys. Rev. Lett. 65, 2145.CrossRefGoogle ScholarPubMed
Fleurot, N., Cavailler, C. & Bourgade, J.L. (2005). The laser mégajoule (LMJ) project dedicated to inertial confinement fusion: development and construction status. Fusion Eng. Des. 74, 147.CrossRefGoogle Scholar
Fox, W., Porkolab, M., Egedal, J., Katz, N. & Le, A. (2008). Laboratory observation of electron phase-space holes during magnetic reconnection. Phys. Rev. Lett. 101, 255003.CrossRefGoogle ScholarPubMed
Guio, P., Børve, P.L., Daldorff, K.S., Lynov, J.P., Michelsen, P., Pècseli, H.L., Juul Rasmussen, J., Saeki, K. & Trulsen, J. (2003). Phase space vortices in collisionless plasmas. Nonlinear Proc. Geophys. 10, 75.CrossRefGoogle Scholar
Haan, S.W., Herrmann, M.C., Salmonson, J.D., Amendt, P.A., Callahan, D.A., Dittrich, T.R., Edwards, M.J., Jones, O.S., Marinak, M.M., Munro, D.H., Pollaine, S.M., Spears, B.K. & Suter, L.J. (2007). Update on design simulations for nif ignition targets, and the rollup of all specifications into an error budget. Eur. Phys. J. D 44, 249258.CrossRefGoogle Scholar
Hairapetian, G. & Stenzel, R.L. (1988). Expansion of a two-electron-population plasma into vacuum. Phys. Rev. Lett. 61, 1607.CrossRefGoogle ScholarPubMed
Haynam, C.A., Sacks, R.A., Wegner, P.J., Bowers, M.W., Dixit, S.N., Erbert, G.V., Heestand, G.M., Henesian, M.A., Hermann, M.R., Jancaitis, K.S., Manes, K.R., Marshall, C.D., Mehta, N.C., Menapace, J., Nostrand, M.C., Orth, C.D., Shaw, M.J., Sutton, S.B., Williams, W.H., Widmayer, C.C., White, R.K., Yang, S.T. & Van Wonterghem, B.M. (2008). The National Ignition Facility 2007 laser performance status. J. Phys.: Conf. Ser. 112, 032004.Google Scholar
Hoshino, M. (2003). Coupling across many scales. Sci. 299, 834.CrossRefGoogle Scholar
Kato, Y., Mima, K., Miyanaga, N., Arinaga, S., Kitagawa, Y., Nakatsuka, M. & Yamanaka, C. (1984). Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett. 53, 10571061.CrossRefGoogle Scholar
Kauffman, R.L., Powers, L.V., Dixit, S.N., Glendinning, S.G., Glenzer, S.H., Kirkwood, R.K., Landen, O.L., Macgowan, B.J., Moody, J.D., Orzechowski, T.J., Pennington, D.M., Stone, G.F., Suter, L.J., Turner, R.E., Weiland, T.L., Richard, A.L. & Blain, M.A. (1998). Improved gas-filled hohlraum performance on nova with beam smoothing. Phys. Plasmas 5, 19271935.CrossRefGoogle Scholar
Koyama, K., Petre, R., Gotthelf, E.V., Hwang, U., Matsuura, M., Ozaki, M. & Holt, S.S. (1995). Evidence for shock acceleration of high-energy electrons in the supernova remnant SN1006. Nat. 378, 255.CrossRefGoogle Scholar
Kruer, W.L. (2003). The Physics of Laser Plasma Interaction. Cambridge, MA: Westview Press.Google Scholar
Lindl, J.D., Amendt, P., Berger, R.L., Glendinning, S.G., Glenzer, S.H., Haan, S.W., Kauffman, R.L., Landen, O.L. & Suter, L.J. (2004). The physics basis for ignition using indirect-drive targets on The National Ignition Facility. Phys. Plasmas 11, 339492.CrossRefGoogle Scholar
Mackinnon, A.J., Patel, P.K., Borghesi, M., Clarke, R.C., Freeman, R.R., Habara, H., Hatchett, S.P., Hey, D., Hicks, D.G., Kar, S., Key, M.H., King, J.A., Lancaster, K., Neely, D., Nikkro, A., Norreys, P.A., Notley, M.M., Phillips, T.W., Romagnani, L., Snavely, R.A., Stephens, R.B. & Town, R.P.J. (2006). Proton radiography of a laser-driven implosion. Phys. Rev. Lett. 97, 045001.CrossRefGoogle ScholarPubMed
Meezan, N.B., Divol, L., Marinak, M.M., Kerbel, G.D., Suter, L.J., Stevenson, R.M., Slark, G.E. & Oades, K. (2004). Hydrodynamics simulations of 2ω laser propagation in underdense gasbag plasmas. Phys Plasmas 11, 5573.CrossRefGoogle Scholar
Moody, J.D., Baldis, H.A., Montgomery, D.S., Estabrook, K., Dixit, S. & Labaune, C. (1993). Beam smoothing effects on stimulated Raman and Brillouin backscattering in laser-produced plasma. J. Fusion Energy 12, 323.CrossRefGoogle Scholar
Moreau, L., Levassort, C., Blondel, B., De Nonancourt, C., Croix, C., Thibonnet, J. & Balland-Longeau, A. (2009). Recent advances in development of materials for laser target. Laser Part. Beams 27, 537.CrossRefGoogle Scholar
Norman, M.J., Andrew, J.E., Bett, T.H., Clifford, R.K., England, J.E., Hopps, N.W., Parker, K.W., Porter, K. & Stevenson, M. (2002). Multipass reconfiguration of the Helen Nd:glass laser at the atomic weapons establishment. Appl. Opt. 41, 3497.CrossRefGoogle ScholarPubMed
Perkins, F.W. & Valeo, E.J. (1974). Thermal self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 32, 1234.CrossRefGoogle Scholar
Roberts, K.V. & Berk, H.L. (1967). Nonlinear evolution of a two-stream instability. Phys. Rev. Lett. 19, 297300.CrossRefGoogle Scholar
Romagnani, L., Borghesi, M., Cecchetti, C.A., Kar, S., Antici, P., Audebert, P., Bandhoupadjay, S., Ceccherini, F., Cowan, T., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Heathcote, R., Jung, R., Liseykina, T.V., Macchi, A., Mora, P., Neely, D., Notley, M., Osterholtz, J., Pipahl, C.A., Pretzler, G., Schiavi, A., Schurtz, G., Toncian, T., Wilson, P.A. & Willi, O. (2008). Proton probing measurement of electric and magnetic fields generated by ns and ps laser-matter interactions. Laser Part. Beams 26, 241.CrossRefGoogle Scholar
Robson, L., Simpson, P.T., Clarke, R.J., Ledingham, K.W.D., Lindau, F., Lundh, O., Mccanny, T., Mora, P., Neely, D., Wahlstrom, C.-G., Zepf, M. & Mckenna, P. (2007). Scaling Of Proton Acceleration Driven By Petawatt-Laser-Plasma-Interactions. Nat. Phys. 3, 58.CrossRefGoogle Scholar
Sarri, G., Dieckmann, M.E., Brown, C.R.D., Cecchetti, C.A., Hoarty, D.J., James, S.F., Jung, R., Kourakis, I., Schamel, H., Willi, O. & Borghesi, M. (2010). Observation and characterization of laser-driven phase space electron holes. Phys. Plasmas 17, 010701.CrossRefGoogle Scholar
Seifter, A., Kyrala, G.A., Goldman, S.R., Hoffman, N.M., Kline, J.L. & Batha, S.H. (2009). ‘Demonstration of symcaps to measure implosion symmetry in the foot of the nif scale 0.7 hohlraums. Laser Part. Beams 27, 123127.CrossRefGoogle Scholar
Skupsky, S., Short, R.W., Kessler, T., Craxton, R.S., Letzring, S. & Soures, J.M. (1989). Improved laser-beam uniformity using the angular dispersion of frequency-modulated light. J. Appl. Phys. 66, 3456.CrossRefGoogle Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., Mackinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids, Phys. Rev. Lett. 85, 2945.CrossRefGoogle ScholarPubMed
Ziegler, J.F., Biersack, J.P. & Littmark, U. (1985). The Stopping and Range Of Ions in Solids. New York: Pergamon Press.Google Scholar