Skip to main content Accessibility help
×
Home

Production of ion beams in high-power laser–plasma interactions and their applications

Published online by Cambridge University Press:  01 March 2004

F. PEGORARO
Affiliation:
Physics Department, University of Pisa and Instituto Nazionale Fisica della Materia, Pisa, Italy
S. ATZENI
Affiliation:
Energetics Department, University of Rome “La Sapienza” and Instituto Nazionale Fisica della Materia, Rome, Italy
M. BORGHESI
Affiliation:
Department of Pure and Applied Physics, Queen's University, Belfast, UK
S. BULANOV
Affiliation:
General Physics Institute, Russian Academy of Sciences, Moscow, Russia Advanced Photon Research Center, Japan Atomic Energy Research Institute, Kyoto-fu, Japan
T. ESIRKEPOV
Affiliation:
Advanced Photon Research Center, Japan Atomic Energy Research Institute, Kyoto-fu, Japan
J. HONRUBIA
Affiliation:
Escuela Tenica Superior Ingenieros Industriales, Universidad Politecnica de Madrid, Spain
Y. KATO
Affiliation:
Advanced Photon Research Center, Japan Atomic Energy Research Institute, Kyoto-fu, Japan
V. KHOROSHKOV
Affiliation:
Institute of Theoretical and Experimental Physics, Moscow, Russia
K. NISHIHARA
Affiliation:
Institute of Laser Engineering, Osaka University, Japan
T. TAJIMA
Affiliation:
Advanced Photon Research Center, Japan Atomic Energy Research Institute, Kyoto-fu, Japan
M. TEMPORAL
Affiliation:
Escuela Tenica Superior Ingenieros Industriales, Universidad Politecnica de Madrid, Spain
O. WILLI
Affiliation:
Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf, Germany

Abstract

Energetic ion beams are produced during the interaction of ultrahigh-intensity, short laser pulses with plasmas. These laser-produced ion beams have important applications ranging from the fast ignition of thermonuclear targets to proton imaging, deep proton lithography, medical physics, and injectors for conventional accelerators. Although the basic physical mechanisms of ion beam generation in the plasma produced by the laser pulse interaction with the target are common to all these applications, each application requires a specific optimization of the ion beam properties, that is, an appropriate choice of the target design and of the laser pulse intensity, shape, and duration.

Type
International Conference on the Frontiers of Plasma Physics and Technology
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

References

Amaldi, U. (2001). The Italian hadrontherapy project CNAO. Physica Mecica-XVII, Supplement 1, 3337.
Atzeni, S., Temporal, M. & Honrubia, J.J. (2002). A first analysis of fast ignition of precompressed ICF fuel by laser-accelerated protons. Nucl. Fusion 42, L1L4.Google Scholar
Badziak, J., Wornya, E., Parys, P., Platonov, K.Y., Jablonski, S., Ryc, L., Vankov, A.B. & Wolowski, J. (2001). Fast proton generation from ultrashort Laser pulse interaction with double-layer foil targets. Phys. Rev. Lett. 86, 215001.CrossRefGoogle Scholar
Badziak, J., Wornya, E., Parys, P., Wolowski, J., Platonov, K.Yu. & Vandov, A.B. (2002). Effect of foil target thickness on fast proton generation driven by ultrashort-pulse laser. J. Appl. Phys. 91, 55045506.CrossRefGoogle Scholar
Borghesi, M., Campbell, D.H., Schiavi, A., Haines, M.G., Willi, O., MacKinnon, A.J., Patel, P., Gizzi, L.A., Galimberti, M., Clarke, R.J., Pegoraro, F., Ruhl, H. & Bulanov, S.V. (2002a). Electric field detection in laser-plasma interaction experiments via the proton imaging technique. Phys. Plasmas 9, 22142220.Google Scholar
Borghesi, M., Bulanov, S., Campbell, D.H., Clarke, R.J., Esirkepov, T.Z., Galimberti, M., Gizzi, L.A., MacKinnon. A.J., Naumova, N.M., Pegoraro, F., Ruhl, H., Schiavi, A., &Willi, O. (2002b). Macroscopic evidence of soliton formation in multiterawatt laser-plasma interaction. Phys. Rev. Lett. 88, 135002.Google Scholar
Borghesi, M., Schiavi, A., Campbell, D.H., Haines, M.G., Willi, O., MacKinnon, A.J., Patel, P., Galimberti, M & Gizzi, L.A. (2003). Proton imaging detection of transient electromagnetic fields in laser-plasma interactions. Rev. Scient. Instrum. 74, 16881693.CrossRefGoogle Scholar
Bulanov, S.V., Inovenkov, I.N., Kirsanov, V.I., Naumova, N.M. & Sakharov, A.S. (1992). Nonlinear depletion of ultrashort and relativistically strong laser pulses in an underdense plasma. Phys. Fluids 4, 19351942.CrossRefGoogle Scholar
Bulanov, S.V., Naumova, N.M. & Pegoraro, F. (1994). Interaction of an ultrashort, Relativistically strong pulse with an overdense plasma. Phys. Plasmas 1, 745757.CrossRefGoogle Scholar
Bulanov, S.V., Esirkepov, T.Z., Kamenets, F.F. & Naumova, N.M (1995). Electromagnetic solution formation during interaction of relativistically strong laser pulses with plasmas. Plasma Phys. Rep. 21, 550561.Google Scholar
Bulanov, S.V., Esirkepov, T.Z., Naumova, N.M., Pegoraro, F. & Vshivkov, V.A. (1999). Solitonlike electromagnetic waves behind a superintense laser pulse in a plasma. Phys. Rev. Lett. 82, 34403443.CrossRefGoogle Scholar
Bulanov, S.V., Esirkepov, T.Z., Califano, F., Kato, Y., Liseikina, T.V., Mima, K., Naumova, N.M., Nishihara, K., Pegoraro, F., Ruhl, H., Sentoku, Y. & Ueshima, Y. (2000). Generation of the collimated beams of relativistic ions in laser plasma interactions. JTEP Lett. 71, 407411.CrossRefGoogle Scholar
Bulanov, S.V., Califano, F., Dudnikova, G.I., Esirkepov, T.Z., Inovenkov, I.N., Kamenets, F.F., Lisejkina, T.V., Lontano, M., Mima, K., Naumova, N.M., Nishihara, K., Pegoraro, F., Ruhl, H., Sakharov, A.S., Sentoku, Y., Vshivkov, V.A. & Zhakhovskii, V.V. (2001). Relativistic interaction of laser pulses with plasmas. In Reviews of Plasma Physics. (Shafranov, V.D., ed.). 22, pp. 227335. New York: Plenum.CrossRef
Bulanov, S.V., Esirkepov, T.Z., Kamenets, F.F., Kato, Y., Kuznetsov, A.V., Nishihara, K., Pegoraro, F., Tajima, T. & Khoroshkov, V.S. (2002a). Generation of high-quality charged particle beams during the acceleration of ions by high-power during the acceleration of ions by high-power laser radiation laser radiation. Plasma Phys. Rep. 28, 975991.Google Scholar
Bulanov, S.V., Esirkepov, T.Z., Khoroshkov, V.S., Kuznetsov, A.V. & Pegoraro, F. (2002b). Oncological hadrontherapy with laser ion accelerators in proton therapy. Phys. Lett. A 299, 240247.Google Scholar
Bulanov, S.V. & Khoroshkov, V.S. (2002c). Feasibility of using laser ion accelerators in proton therapy. Plasma Phys. Rep. 28, 453456.Google Scholar
Bychenkov, V.Y., Rozmus, W., Maksimchuk, A., Umstadter, D. & Capjack, C.E. (2001). Fast ignitor concept with light ions. Plasma Phys. Rep. 27, 10171020.CrossRefGoogle Scholar
Clark, E., Krushelnick, K., Zepf, M., Beg, F.N., Tatarakis, M., Machacek, A., Santala, M.I.K., Watts, I., Norreys, P.A. & Dangor, A.E. (2000). Energetic heavy-ion and proton generation from ultraintense laser-plasma interactions with solids. Phys Rev. Lett. 85, 16541657.CrossRefGoogle Scholar
Esirkepov, T.Z., Sentoku, Y., Mima, K., Nishihara, K., Califano, F., Pegoraro, F., Naumova, N.M., Bulanov, S.V., Ueshima, Y., Liseikina, T.V., Vshivkov, V.A. & Kato, Y. (1999). Ion acceleration by super intense laser pulses in plasmas. JETP Lett. 70, 8289.CrossRefGoogle Scholar
Esirkepov, T.Z. (2001). Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor. Comput. Phys. Commun. 135, 144153.CrossRefGoogle Scholar
Esirkepov, T.Z., Nishihara, K., Bulanov, S.V. & Pegoraro, F. (2002a). Three-dimensional relativistic electromagnetic subcycle solitons. Phys. Rev. Lett. 89, A275002.
Esirkepov, T.Z., Bulanov, S.V., Nishihara, K., Tajima, T., Pegoraro, F., Khoroshkov, V.S., Mima, K., Daido, H., Kato, Y., Kitagawa, Y., Nagai, K. & Sakabe, S. (2002b). Proposed double-layer target for the generation of high-quality laser-accelerated ion beams. Phys. Rev. Lett. 175003.
Fourkal, E., Shahine, B., Ding, M., Li, J.S., Tajima, T. & Ma, C.M. (2002). Particle in cell simulation of laser-accelerated proton beams for radiation therapy. Medical Physics 29, 27882798.CrossRefGoogle Scholar
Goiten, M., Lomax, A.J. & Pedroni, E.S. (2002). Treating cancer with protons. Phys. Today 55, 4548.CrossRefGoogle Scholar
Haines, M.G. (1981). Thermal instability and magnetic field generated by large heat flow in a plasma, especially under laser-fusion conditions. Phys. Rev. Lett. 47, 917920.CrossRefGoogle Scholar
Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., MacKinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W. & Roth, M. (2000). Electron, photon, and ion beams from the relativistic interaction of petawatt laser pulses with solid targets. Phys. Plasmas 7, 20762082.CrossRefGoogle Scholar
Hegelich, M., Karsch, S., Pretzler, G., Habs, D., Witte, K., Guenther, W., Allen, M., Blazevic, A., Fuchs, J., Gauthier, J.C., Geissel, M., Audebert, P., Cowan, T. & Roth, M. (2002). MeV ion jets from short-pulse-laser interaction with thin foils. Phys Rev. Lett. 89, 085002.CrossRefGoogle Scholar
Khoroshkov, V.S. & Minakova, E.I. (1998). Proton beams in radiotherapy. Eur. J. Phys. 19, 523536.CrossRefGoogle Scholar
Lontano, M., Borchesi, M., Bulanov, S.V., Esirkepov, T.Z., Farina, D., Naumova, N., Nishihara, K., Passoni, M., Pegoraro, F., Ruhl, H., Sakharov, A.S. & Willi, O. (2003). 158. Non-drifting relativistic Electromagnetic solitons in plasmas. Laser Part. Beams 21, 539542.Google Scholar
Kraft, G. (2001). What we can learn from heavy ion therapy for radio-protection in space. Physica Medica XVII. Supl. 1, 33.
MacKinnon, A.J., Borghesi, M., Hatchett, S., Key, M.H., Patel, P.K., Campbell, H., Schiavi, A., Snavely, R., Wilks, S.C. & Willi, O. (2001). Effect of plasma scale length on multi-MeV proton production by intense laser pulses. Phys. Rev. Lett. 86, 17691772.CrossRefGoogle Scholar
MacKinnon, A.J., Sentoku, Y., Patel, P.K., Price, D.W., Hatchett, S., Key, M.H., Andersen, C., Snavely, R. & Freeman, R.R. (2002). Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses. Phys. Rev. Lett. 88, 215006.CrossRefGoogle Scholar
Maksimchuk, A., Gu, S., Flippo, K., Umstadter, D. & Bychenkov, V.Y. (2000). Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett.84, 41084111.CrossRef
Mourou, G., Barty, P. & Perry, M. (1998). Ultra-high intensity lasers, physics of the extreme on a tabletop. Physics Today 51, 2224.CrossRefGoogle Scholar
Mourou, G., Chang, Z., Maksimchuk, A., Nees, J., Bulanov, S.V., Byhenkov, V.Yu., Esirkepov, T.Z., Naumova, N.M., Pegoraro, F. & Ruhl, H., (2002). On the design of experiments for the study of relativistic nonlinear optics in the limit of single-cycle pulse duration and single-wavelength spot size. Plasma Phys. Rep. 28, 1227.CrossRefGoogle Scholar
Nakamura, T. & Kawata, S. (2003). Origin of protons accelerated by an intense laser and the dependence of their energy on the plasma density. Phys. Rev. E, 026403-1-10.
Naumova, N.M., Bulanov, S.V., Esirkepov, T.Z., Farina, D., Nishihara, K., Pegoraro, F., Ruhl, H. & Sakharov, A.S. (2001). Formation of Electromagnetic postsolitons in plasmas. Phys. Rev. Lett. 87, 185004.CrossRefGoogle Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys Rev. Lett. 86, 436439.CrossRefGoogle Scholar
Roth, M., Blazevic, A., Geissel, M., Schlegel, T., Cowan, T.E., Allen, M., Gauthier, J.-C., Audebert, P., Fuchs, J., Meyer-ter-Vehn, J., Hegelich, M., Karsch, S. & Pukhov, A. (2002). Energetic ions generated by laser pulses: A detailed study on target properties. Phys. Rev. ST Accel. Beams 5, 061301.CrossRefGoogle Scholar
Ruhl, H., Bulanov, S.V., Cowan, T.E., Liseikina, T.V., Nickels, P., Pegoraro, F., Roth, M. & Sander, W. (2001). Computer simulation of the three-dimensional regime of proton acceleration in the interaction of laser radiation with a thin spherical target. Plasma Phys. Rep. 27, 363371.CrossRefGoogle Scholar
Sentoku, Y., Esirkepov, T.Z., Mima, K., Nishihara, K., Califano, F., Pegoraro, F. Sakagami, H., Kitagawa, Y., Naumova, N.M., &Bulanov, S.V. (1999). Bursts of superreflected laser light from inhomogeneous plasmas due to the generation of relativistic solitary waves. Phys. Rev. Lett. 83, 34343437.CrossRefGoogle Scholar
Sentoku, Y., Liseikina, T.V., Esirkepov, T.Z., Califano, F., Naumova, N.M., Ueshima, Y., Vshivkov, V.A., Kato, Y., Mima, K., Nishihara, K., Pegoraro, F. & Bulanov, S.V. (2000). High density collimated beams of relativistic ions produced by petawatt laser pulses in plasmas. Phys. Rev. E 62, 72717281.Google Scholar
Sentoku, Y., Bychenkov, V.Y., Flippo, K., Maksimchuk, A., Mima, K, Mourou, G., Sheng, Z.M. & Umstadter, D. (2002). High-energy ion generation in Interaction of short laser pulse with high-density plasma. Appl. Phys. B 74, 207215.CrossRefGoogle Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M. Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., MacKinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D., &Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.CrossRefGoogle Scholar
Temporal, M., Honrubia, J.J. & Atzeni, S. (2002). Numerical study of fast ignition of ablatively imploded deuterium-tritium fusion capsules by ultra-intense proton beams. Physics of Plasmas 9, 3098.Google Scholar
Zepf, M., Clark, E.L., Beg, F.N., Clarke, R.J., Dangor, A.E., Gopal, A., Krushelnick, K., Norreys, P.A., Tatarakis, M., Wagner, U. & Wei, M.S. (2003). Proton acceleration from high-intensity laser interactions with thin foil targets Phys. Rev. Lett. 90, 064801.CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 1
Total number of PDF views: 14 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 17th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-qmqs2 Total loading time: 0.424 Render date: 2021-01-17T04:26:40.965Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sun Jan 17 2021 04:02:53 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Production of ion beams in high-power laser–plasma interactions and their applications
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Production of ion beams in high-power laser–plasma interactions and their applications
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Production of ion beams in high-power laser–plasma interactions and their applications
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *