Skip to main content Accessibility help
×
Home

Polarization effect of fields on vacuum laser acceleration

Published online by Cambridge University Press:  19 June 2007

J.J. XU
Affiliation:
Applied Ion Beam Physical Laboratory, Institute of Modern Physics, Fudan University, Shanghai, China
Q. KONG
Affiliation:
Applied Ion Beam Physical Laboratory, Institute of Modern Physics, Fudan University, Shanghai, China
Z. CHEN
Affiliation:
Applied Ion Beam Physical Laboratory, Institute of Modern Physics, Fudan University, Shanghai, China
P.X. WANG
Affiliation:
Applied Ion Beam Physical Laboratory, Institute of Modern Physics, Fudan University, Shanghai, China
W. WANG
Affiliation:
Shanghai Institute of Laser Plasma, Shanghai, China
D. LIN
Affiliation:
Applied Ion Beam Physical Laboratory, Institute of Modern Physics, Fudan University, Shanghai, China
Y.K. HO
Affiliation:
Applied Ion Beam Physical Laboratory, Institute of Modern Physics, Fudan University, Shanghai, China

Abstract

Concerning laser-driven electron acceleration in vacuum, a comparison was made between using circularly polarized (CP) laser field and linearly polarized (LP) field. It has been found that the main advantage for using CP field is that its acceleration channel occupies relatively larger phase space, which can give rise to greater acceleration efficiency. This feature chiefly comes from the difference in the distribution of the longitudinal electric components of these two kinds of fields. One of the disadvantages with CP field is the “energy saturation” phenomenon as the laser intensity is sufficiently high, resulting from the enhanced Lorentz force component in CP field. Physical explanations of these characteristics are addressed as well.

Type
Research Article
Copyright
© 2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 15th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-2nq4t Total loading time: 0.292 Render date: 2021-01-15T15:31:49.003Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Fri Jan 15 2021 15:00:07 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Polarization effect of fields on vacuum laser acceleration
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Polarization effect of fields on vacuum laser acceleration
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Polarization effect of fields on vacuum laser acceleration
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *