Skip to main content Accessibility help
×
Home
Hostname: page-component-54cdcc668b-mnmn6 Total loading time: 1.098 Render date: 2021-03-09T04:59:48.196Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

One-dimensional computation of discharge-pumped excimer lasers under repetitive operations

Published online by Cambridge University Press:  09 March 2009

K. Kasuya
Affiliation:
Department of Energy Sciences, The Graduate School at Nagatsuta, Tokyo Institute of Technology, Yokohama, Kanagawa 227, Japan
K. Horioka
Affiliation:
Department of Energy Sciences, The Graduate School at Nagatsuta, Tokyo Institute of Technology, Yokohama, Kanagawa 227, Japan
N. Hikida
Affiliation:
Department of Energy Sciences, The Graduate School at Nagatsuta, Tokyo Institute of Technology, Yokohama, Kanagawa 227, Japan
M. Watanabe
Affiliation:
Department of Energy Sciences, The Graduate School at Nagatsuta, Tokyo Institute of Technology, Yokohama, Kanagawa 227, Japan
Y. Kawakita
Affiliation:
Research and Development Division, Nissin Electric Company Limited, Ukyo-ku, Kyoto 615, Japan
S. Kato
Affiliation:
Research and Development Division, Nissin Electric Company Limited, Ukyo-ku, Kyoto 615, Japan
H. Okuda
Affiliation:
Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA

Abstract

Zero-dimensional numerical computation of electrical discharge-pumped excimer lasers is extended to a one-dimensional model that is used to study the effects of the density perturbations of the background neutral gas and the nonuniform predischarge (which means preionization in this paper) electron density on the transition of the uniform discharge to the nonuniform prestage state leading to the onset of arc formation (which is not included in this particular model). It was found that a local density depression of 1% or an enhancement of the local electric field of 1% can increase the local energy input by several hundred percent. The initial electron density perturbations, on the other hand, are found to modify the energy input by the same order of magnitude as the initial perturbations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below.

References

Flannery, M.R. & Yang, T.P. 1978 Appl. Phys. Lett. 33, 1.CrossRefGoogle Scholar
Goto, T. et al. 1987 Tech. Digest 4th Japan. Symp. Gas Flow & Chemical Lasers 1, 95.Google Scholar
Greene, A.E. & Brau, C.A. 1978 IEEE J. Quant. Electr. QE-14, 951.CrossRefGoogle Scholar
Hokazono, H. et al. 1984 J. Appl. Phys. 56, 1.CrossRefGoogle Scholar
Johnson, T.H. et al. 1979 IEEE J. Quant. Electr. QE-15, 289.CrossRefGoogle Scholar
Kannari, F. et al. 1985 J. Appl. Phys. 57, 4309.CrossRefGoogle Scholar
Kasuya, K. et al. 1991 Proc. Symp. 8th Gas Flow & Chemical Lasers SPIE-1397, 67.Google Scholar
Kasuya, K. et al. 1992 Shock Waves, Proc. 18th Symp., vol. 2, Takayama, K., ed. (Springer-Verlag, Berlin), 1257.Google Scholar
Mizunami, T. et al. 1981 Rev. Laser Eng. 9, 527 (in Japanese).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 6 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 9th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

One-dimensional computation of discharge-pumped excimer lasers under repetitive operations
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

One-dimensional computation of discharge-pumped excimer lasers under repetitive operations
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

One-dimensional computation of discharge-pumped excimer lasers under repetitive operations
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *