Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-pgkvd Total loading time: 0.373 Render date: 2022-08-11T14:51:47.966Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Laser-ablation and induced nanoparticle synthesis

Published online by Cambridge University Press:  23 October 2013

Dimitri Batani*
Affiliation:
Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, Talence, France
Tommaso Vinci
Affiliation:
LULI, Ecole Polytechnique, Palaiseau, France
Davide Bleiner
Affiliation:
Institute for Applied Physics, University of Bern, Berne, Switzerland
*
Address correspondence and reprint requests to: Dimitri Batani, University Bordeaux, CEA, CNRS, Centre Laser Intense at Applications, UMR 5107, F-33405 Talence, France. E-mail: batani@celia.u-bordeaux1.fr

Abstract

Laser pulses are largely used for processing and analysis of materials and in particular for nano-particle synthesis. This paper addresses fundamentals of the generation of nano-materials following specific thermodynamic paths of the irradiated material. Computer simulations using the hydro code MULTI and the SESAME equation of state have been performed to follow the dynamics of a target initially heated by a short laser pulse over a distance comparable to the metal skin depth.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Axelbaum, R.L. (1997). “Developments in sodium/halide flame technology for the synthesis of unagglomerated non-oxide nanoparticles.” In Proc. of the Joint NSF-NIST Conference on Nanoparticles: Synthesis, Processing into Functional Nanostructures and Characterization. May 12–13, Arlington, VA.Google Scholar
Barnes, J. & Lyon, S. (1989). SESAME EOS table 3719 for AluminumGoogle Scholar
Batani, D., Stabile, H., Ravasio, A., Lucchini, G., Ullschmied, J., Krousky, E., Juha, L., Skala, J., Kralikova, B., Pfeifer, M., Kadlec, C., Mocek, T., Präg, A., Nishimura, H., Ochi, Y.. (2003). “Ablation Pressure Scaling at Short Laser Wavelength“ Physical Review E, 68, 067403.CrossRefGoogle Scholar
Batani, D. (2010). “Short-pulse laser ablation of materials at high intensities: influence of plasma effectsLaser and Particle Beams, 28, 235.CrossRefGoogle Scholar
Becker, M. F., Brock, J. R., Cai, Hong, Henneke, D. E., Keto, J. W., Lee, Jaemyoung, Nichols, W. T. & Glicksman, H. D.. (1998). “Metal nano-particles generated by laser ablationNanostruct. Mater. 10, 853863.CrossRefGoogle Scholar
Berndt, C.C., Karthikeyan, J., Chraska, T., & King, A.H.. (1997). “Plasma spray synthesis of nanozirconia powder “in Proc. of the Joint NSF-NIST Conf. on Nanoparticles.Google Scholar
Blander, M., Katz, J.L.. (1975). “Bubble nucleation in liquidsAmer. Inst. Chem. Eng. (AIChE) Journal, 21, 833848.CrossRefGoogle Scholar
Bleiner, D. & Bogaerts, Annemie. (2006). “Multiplicity and contiguity of ablation mechanisms in laser-assisted analytical micro-samplingSpectrochimica Acta Part B 61, 421432.CrossRefGoogle Scholar
Bleiner, D. (2005). “Mathematical modelling of laser-induced particulate formation in direct solid microanalysis, Spectroch. Acta B 60, 4964.CrossRefGoogle Scholar
Bulgakova, NM, Bulgakov, AV. (2001). “Pulsed laser ablation of solids: transition from normal vaporization to phase explosionAppl. Phys. A 73, 199.CrossRefGoogle Scholar
Marco, Bussoli, Batani, Dimitri, Milani, Marziale, Trtica, Milan, Gakovic, Biljana, Krousky, Edouard. (2007). “Study of Laser Induced Ablation with FIB Devices“ Laser and Particle Beams, Volume 25, Issue 01, pp 121125Google Scholar
Cai, H., Chaudhary, N., Lee, J., Becker, M. F., Brock, J. R. & Keto, J. W.. (1998). “Generation of metal nanoparticles by laser ablation of microspheresJ. Aerosol Sci. 29, 627636.CrossRefGoogle Scholar
Calcote, H.F., & Keil, D.G.. (1997). “Combustion synthesis of silicon carbide powder” in Proc. of the Joint NSF-NIST Conf. on Nanoparticles.Google Scholar
Chrisey, D.B., Hubler, G.K.. (eds.) (1994). “Pulsed laser deposition of thin films” Wiley-Interscience, New-YorkGoogle Scholar
De la Mora, J.F., Loscertales, I.G., Rosell-Llompart, J., Serageldin, K., & Brown, S.. (1994). “Electrospray atomizers and ultrafine particles” in Proc. Joint NSF-NIST Conf. on UltraFine Particle Engineering (May 25–27, 1994, Arlington, VA)Google Scholar
Di Bernardo, A., Batani, D., Courtois, C., Cros, B., Matthieussent, G.. (2003). “High Intensity Ultra short laser induced ablation of metal targets in the presence of ambient gasLaser and Particle Beams, 21, 59–64 (2003).CrossRefGoogle Scholar
Eidmann, K., Meyer-Ter-Vehn, J., Schlegel, T., Hüller, S. (2000). PRE, 62, 1202.CrossRefGoogle Scholar
Fazio, E., Neri, F., Ossi, P.M., Santo, N. & Trusso, S.. (2009). “Ag nanocluster synthesis by laser ablation in Ar atmosphere: A plume dynamics analysisLaser and Particle Beams, Volume 27, Issue 02, pp 281290CrossRefGoogle Scholar
Gamaly, E.G.Rode, A.V., Luther-Davies, B., Tikhonchuk, V.T.. (2002). “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics“ Physics of Plasmas 9 (3), 949957.CrossRefGoogle Scholar
Geoghan, DB (1993). “Imaging and blackbody emission spectra of particulates generated in the KrF-laser ablation of BN and YBa2Cu3O7–xAppl Phys Lett 62, 14631465.CrossRefGoogle Scholar
Ginzburg, V.L. & Shabanskii, V.P.. (1955). Dokl. Akad. Nauk SSSR 100, 445.Google Scholar
Greer, L.A., Tabat, M.D., Lu, C.. (1997). “Future trends for large-area pulsed laser depositionNuclear Instr. Meth. Phys. Res. B 121, 357CrossRefGoogle Scholar
Huisken, F., Hofmeister, H., Kohn, B., Laguna, M.A. & Paillard, V.. (2000). “Laser production and deposition of light-emitting silicon nanoparticlesAppl. Surf. Sci., 154–155, 305313.CrossRefGoogle Scholar
Kaganov, M.I., Lifshitz, I.M., & Tanatarov, L.V.. (1957). Zh. Eksp. Teor. fiz.31, 232 [Sov. Phys. JETP 4, 173 (1957)].Google Scholar
Kanavin, A.P. et al. . (1998). Phy. Rev. B, 57(23), 14698CrossRefGoogle Scholar
Kandlikar, S.G., Shoji, M., Dhir, V.K.. (Editors) (1999). “Handbook of phase changes” Taylor & Francis GroupGoogle Scholar
Kear, B.H., Sadangi, R.K., & Liao, S.C.. (1997). “Synthesis of WC/Co/diamond nanocomposites” in Proc. of the Joint NSF-NIST Conf. on Nanoparticles.Google Scholar
Kleinert, H. (1997). “Gauge fields in condensed matter” Vol. II, pp. 7431456.Google Scholar
Kokai, F., Koshio, A., Shiraishi, M., Matsuta, T., Shimoda, S., Ishihara, M., Koga, Y., Deno, H.. (2005). “Modification of carbon nanotubes by laser ablationDiamond And Related Materials 14, 724728.CrossRefGoogle Scholar
Kung, H.H., & Ko, E.I.. (1996). Chem. Eng. J. 64, 203.Google Scholar
Liley, P.E. (2000). “The spinolidal for a Van der Waals fluid”, International Journal of Mechanical Engineering Education Vol 30 No 2.Google Scholar
Martynyuk, MM. (1978). “Phase explosion of a metastable fluidComb. Expl. & Shock Waves 13, 178191.CrossRefGoogle Scholar
Martynyuk, MM. (1983). “Critical point parameters of metalsRuss. J. Phys. Chem. 57, 810821.Google Scholar
Márton, Zs.Landström, L., Boman, M. & Heszler, P.. (2003). “A comparative study of size distribution of nanoparticles generated by laser ablation of graphite and tungstenMater. Sci. and Eng. C 23, 225228.CrossRefGoogle Scholar
Messing, G.L., Zhang, S., Selvaraj, U., Santoro, R.J., & Ni, T.. (1994). “Synthesis of composite particles by spray pyrolysis” in Proc. of the Joint NSF-NIST Conf. on Ultrafine Particle Engineering (May 25–27, Arlington, VA).Google Scholar
Miotello, A., Kelly, R. (1995). “Critical assessment of thermal models for laser sputtering at high fluencesApp. Phys. Lett. 67 35353537CrossRefGoogle Scholar
Nolte, S., et al. (1996). J Opt. soc. Am.B, 14(10), 2716Google Scholar
Danny, Perez & Lewis, Laurent J.. (2003) “Molecular-dynamics study of ablation of solids under femtosecond laser pulsesPhys. Rev. B 67, 184102.Google Scholar
Pratsinis, S.E. (1997). “Precision synthesis of nanostructured particles” in Proc. of the Joint NSF-NIST Conf. on Nanoparticles.Google Scholar
Ramis, R., Schmalz, R. & Meyer-Ter-Vehn, J. (1988). “MULTI A computer code for one-dimensional multigroup radiation hydrodynamicsComputer Physics Communications 49, p. 475505.CrossRefGoogle Scholar
Rao, N.P., Tymiak, N., Blum, J., Neuman, A., Lee, H.J., Girshick, S.L., McMurry, P.H., & Heberlein, J.. (1997). “Nanostructured materials production by hypersonic plasma particle deposition” in Proc. of the Joint NSF-NIST Conf. on Nanoparticles.Google Scholar
Rethfeld, B., Sokolowski-Tinten, K, von der Linde, D, Anisimov, SI. (2002). “Ultrafast thermal melting of laser-excited solids by homogeneous nucleationPhys. Rev. B, 65, 092103.CrossRefGoogle Scholar
Russo, R.E., Mao, X.L., Liu, C. & Gonzalez, J.. (2004). “Laser assisted plasma spectrochemistry: laser ablationJ. Anal. Atom. Spectrom. 19, 10841089.CrossRefGoogle Scholar
Scott, C.D., Arepalli, S., Nikolaev, P., Smalley, R.E.. (2001). “Growth mechanisms for single-wall carbon nanotubes in a laser-ablation processAppl. Phys. A: Mater. Sci. & Proc. 72, 573580.CrossRefGoogle Scholar
Semaltianos, Logothetidis, Perrie, Romani, Potter, Edwardson, French, Sharp, DeardenWatkins, J. Watkins, J. (2010). Nanopart. Res. 12, 573.CrossRefGoogle Scholar
Song, KH, Xu, X. (1998). “Explosive phase transformation in excimer laser ablationAppl. Surf. Sci. 127–129, 111.CrossRefGoogle Scholar
Trtica, M., Gakovic, B., Maravic, D., Batani, D., & Redaelli, R. (2006). “Surface Modification of Titanium by High Intensity Ultra-short Nd:YAG Laser”, Mater. Sci. Forum, 518, 167172.CrossRefGoogle Scholar
Xu, X. (2002). Phase explosion and its time lag in nanosecond laser ablation. Appl. Surf. Sci. 197–198, 6166.CrossRefGoogle Scholar
Ying-Long, Wang, Xu, Wei, Zhou, Yang, Chu, Li-Zhi and Guang-Sheng, Fu. (2007). “Influence of pulse repetition rate on the average size of silicon nanoparticles deposited by laser ablationLaser and Particle Beams, Volume 25, Issue 01, Mar, pp 913Google Scholar
Willmott, P.R. (2004). “Deposition of complex multielemental thin films.Prog. Surf. Sci. 76, 163.CrossRefGoogle Scholar
Zachariah, M.R. (1994). Flame processing, in-situ characterization, and atomistic modeling of nanoparticles in the reacting flow group at NIST. In Proc. of the Joint NSF-NIST Conf. on Ultrafine Particle Engineering. May 25–27, Arlington, VA.Google Scholar
Zhigilei, Leonid V. & GarrisBarbara, J. Barbara, J. (1999). Molecular dynamics simulation study of the fluence dependence of particle yield and plume composition in laser desorption and ablation of organic solids. Appl. Phys. Lett. 74, 134.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Laser-ablation and induced nanoparticle synthesis
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Laser-ablation and induced nanoparticle synthesis
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Laser-ablation and induced nanoparticle synthesis
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *