Skip to main content Accessibility help
×
Home

First demonstration of collimation and monochromatisation of a laser accelerated proton burst

Published online by Cambridge University Press:  17 November 2008

S. Ter-Avetisyan
Affiliation:
Max-Born-Institut, Berlin, Germany Department of Physics and Astronomy, Queen's University of Belfast, Belfast, UK
M. Schnürer
Affiliation:
Max-Born-Institut, Berlin, Germany
R. Polster
Affiliation:
Max-Born-Institut, Berlin, Germany
P.V. Nickles
Affiliation:
Max-Born-Institut, Berlin, Germany
W. Sandner
Affiliation:
Max-Born-Institut, Berlin, Germany
Corresponding
E-mail address:

Abstract

Laser produced ion beams have a large divergence angle and a wide energy spread. To our knowledge, this is the first demonstration of collimation and monochromatisation of laser accelerated proton beams, using a permanent quadrupole magnet lens system. It acts as a tunable band pass filter by collimating or focusing the protons with the same energy. Because it gathers nearly the whole proton emission, a strong enhancement of the beam density appears. For the collimated beam, an increase of the proton density in the (3.7 ± 0.3) MeV energy band up to a factor of ~30, from possible 40, relative to the non-collimated beam is demonstrated. With the help of this simple, reliable, and well established technique new perspectives will be opened for science and technology, monoenergetic ion beams can be attained in any lab, where a source of laser accelerated ions exist. This finding enables to apply afterward well known beam steering techniques to the formed ion beam, which are applied in conventional accelerators to manipulate the beam parameters or to transport the beams and make them use in many application.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below.

References

Basten, M.A., Booske, J.H. & Anderson, J. (1994). Magnetic quadrupole formation of elliptical sheet electron beams for high-power microwave devices. IEEE Trans. Plasma Sci. 22, 960.CrossRefGoogle Scholar
Borghesi, M., Audebert, P., Bulanov, S.V., Cowan, T., Fuchs, J., Gauthier, J.C., Mackinnon, A.J., Patel, P.K., Pretzler, G., Romagnani, L., Schiavi, A., Toncian, T. & Willi, O. (2005). High-intensity laser-plasma interaction studies employing laser-driven proton probes. Laser Part. Beams 23, 291295.CrossRefGoogle Scholar
Borghesi, M., Schiavi, A., Campbell, D.H., Haines, M.G., Willi, O., Mackinnon, A.J., Gizzi, L.A., Galimberti, M., Clarke, R.J. & Ruhl, H. (2001). Proton imaging: a diagnostic for inertial confinement fusion/fast ignitor studies. Plasma Phys. & Control. Fusion 43, A267A276.CrossRefGoogle Scholar
Brambrink, E., Roth, M., Blazevic, A. and Schlegel, T. (2006a). Modeling of the electrostatic sheath shape on the rear target surface in short-pulse laser-driven proton acceleration. Laser Part. Beams 24, 163168.CrossRefGoogle Scholar
Brambrink, E., Schreiber, J., Schlegel, T., Audebert, P., Cobble, J., Fuchs, J., Hegelich, M. and Roth, M. (2006b). Transverse characteristics of short-pulse laser-produced ion beams: A study of the acceleration dynamics. Phys. Rev. Lett. 96, 154801.CrossRefGoogle ScholarPubMed
Clark, E.L., Krushelnick, K., Davies, J R., Zepf, M., Tatarakis, M., Beg, F.N., Machacek, A., Norreys, P.A., Santala, M.I.K., Watts, I. & Dangor, A.E. (2000). Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Phys. Rev. Lett. 84, 670673.CrossRefGoogle ScholarPubMed
Cobble, J.A., Johnson, R.P., Cowan, T.E., Renard-Le Galloudec, N. & Allen, M. (2002). High resolution laser-driven proton radiography. J. Appl. Phys. 92, 17751779.CrossRefGoogle Scholar
Cowan, T.E., Fuchs, J., Ruhl, H., Kemp, A., Audebert, P., Roth, M., Stephens, R., Barton, I., Blazevic, A., Brambrink, E., Cobble, J., Fernadez, J., Gauthier, J.C., Geissel, M., Hegelich, M., Kaae, J., Karsch, S., Le Sage, G.P., Letzring, S., Manclossi, M., Meyroneinc, S., Newkirk, A., Pepin, H., & Renard-LeGalloudec, N. (2004). Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204801.CrossRefGoogle ScholarPubMed
Gitomer, S.J., Jones, R.D., Begay, F., Ehler, A.W., Kephart, J.F., And Kristal, R. (1986). Fast ions and hot electrons in the laser–plasma interaction. Phys. Fluids 29, 26792688.CrossRefGoogle Scholar
Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C. & Yasuike, K. (2000). Electron, photon, and ion beams from the relativistic interaction of petawatt laser pulses with solid targets. Phys. Plasmas 7, 20762082.CrossRefGoogle Scholar
Hegelich, B.M., Albright, B.J., Cobble, J., Flippo, K., Letzring, S., Paffett, M., Ruhl, H., Schreiber, J., Schulze, R.K. & Fernandez, J.C. (2006). Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441444.CrossRefGoogle ScholarPubMed
Mackinnon, A.J., Sentoku, Y., Patel, P.K., Price, D.W., Hatchett, S., Key, M.H., Andersen, C., Snavely, R. & Freeman, R.R. (2002). Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses. Phys. Rev. Lett. 86, 17691772.CrossRefGoogle Scholar
Maksimchuk, A., Gu, S., Flippo, K., Umstadter, D. & Bychenkov, V.Y. (2000). Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84, 41084111.CrossRefGoogle ScholarPubMed
Patel, P.K., Mackinnon, A.J., Key, M.H., Cowan, T.E., Foord, M.E., Allen, M., Price, D.F., Ruhl, H., Springer, P.T. & Stephens, R. (2003). Isochoric heating of solid-density matter with an ultrafast proton beam. Phys. Rev. Lett. 91, 125004.CrossRefGoogle ScholarPubMed
Rgenstreif, E. (1967). Focusing with quadrupoles, duplets and triplets. Focusing of Charge Particles 1, 353410.Google Scholar
Schwoerer, H., Pfotenhauer, S., Jackel, O., Amthor, K.U., Liesfeld, B., Ziegler, W., Sauerbrey, R., Ledingham, K.W.D. & Esirkepov, T. (2006). Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature 439, 445448.CrossRefGoogle ScholarPubMed
Sentoku, Y.T., Cowan, E., Kempf, A. & Ruhl, H. (2003). High energy proton acceleration in interaction of short laser pulse with dense plasma target. Phys. Plasmas 10, 20092015.CrossRefGoogle Scholar
Shorokhov, O. & Pukhov, A. (2004). Ion acceleration in overdense plasma by short laser pulse. Laser Part. Beams 22, 175181.CrossRefGoogle Scholar
Sisoev, A.A. & Schupachin, M.C. (1077). Introduction to Mass-Spectroscopy. Moscow: Atomizdat.Google Scholar
Spencer, I., Ledingham, K.W.D., McKenna, P., McCanny, T., Singhal, R.P., Foster, P.S., Neely, D., Langley, A.J., Divall, E.J., Hooker, C.J., Clarke, R.J., Norreys, P.A., Clark, E.L., Krushelnick, K. & Davies, J.R. (2003). Experimental study of proton emission from 60-fs, 200-mJ high-repetition-rate tabletop-laser pulses interacting with solid targets. Phys. Rev. E 67, 046402.CrossRefGoogle ScholarPubMed
Ter-Avetisyan, S., Schnurer, M. & Nickles, P.V. (2005). Time resolved corpuscular diagnostics of plasmas produced with high-intensity femtosecond laser pulses. J. Phys. D: Appl. Phys. 38, 863867.CrossRefGoogle Scholar
Ter-Avetisyan, S., Schnurer, M., Busch, S. & Nickles, P.V. (2004). Negative ions from liquid microdroplets irradiated with ultrashort and intense laser pulses. J. Phys. B: Appl. Phys. 37, 36333640.CrossRefGoogle Scholar
Ter-Avetisyan, S., Schnurer, M., Nickles, P.V., Kalashnikov, M., Risse, E., Sokollik, T., Sandner, W., Tikhonchuk, V.T. & Andreev, A.A. (2006). Quasi monoenergetic deuteron bursts produced by ultraintense laser pulses. Phys. Rev. Lett. 96, 145006.CrossRefGoogle Scholar
Toncian, T., Borghesi, M., Fuchs, J., D'humieres, E., Antici, P., Audebert, P., Brambrink, E., Cecchetti, C.A., Pipahl, A., Romagnani, L. & Willi, O. (2006). Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons. Science 312, 410413.CrossRefGoogle ScholarPubMed
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., Mackinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542549.CrossRefGoogle Scholar
Willi, O., Toncian, T., Borghesi, M., Fuchs, J., D'humieres, E., Antici, P., Audebert, P., Brambrink, E., Cecchetti, C., Pipahl, A. & Romagnani, L. (2007). Laser triggered micro-lens for focusing and energy selection of MeV protons. Laser Part. Beams 25, 7177.CrossRefGoogle Scholar
Wollnik, H. (1987). Optics of Charged Particle. London: Academic.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 1
Total number of PDF views: 51 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 16th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-95hzn Total loading time: 0.365 Render date: 2021-01-16T09:56:13.214Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Jan 16 2021 09:52:37 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

First demonstration of collimation and monochromatisation of a laser accelerated proton burst
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

First demonstration of collimation and monochromatisation of a laser accelerated proton burst
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

First demonstration of collimation and monochromatisation of a laser accelerated proton burst
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *