Skip to main content Accessibility help
×
Home

Comparison of femtosecond laser-driven proton acceleration using nanometer and micrometer thick target foils

Published online by Cambridge University Press:  15 December 2011

M. Schnürer
Affiliation:
Max-Born-Institut, Berlin, Germany
A.A. Andreev
Affiliation:
Max-Born-Institut, Berlin, Germany STC “Vavilov State Optical Institute,”St. Petersburg, Russia
S. Steinke
Affiliation:
Max-Born-Institut, Berlin, Germany
T. Sokollik
Affiliation:
Max-Born-Institut, Berlin, Germany Lawrence Berkeley National Laboratory, Berkeley, California University of California, Berkeley, California
T. Paasch-Colberg
Affiliation:
Max-Planck-Institut für Quantenoptik, Garching, Germany
P.V. Nickles
Affiliation:
Gwangju Institute of Science and Technology, GIST, Republic of Korea
A. Henig
Affiliation:
Max-Planck-Institut für Quantenoptik, Garching, Germany Department für Physik, Ludwig-Maximilians-Universität München, Garching, Germany
D. Jung
Affiliation:
Max-Planck-Institut für Quantenoptik, Garching, Germany Department für Physik, Ludwig-Maximilians-Universität München, Garching, Germany
D. Kiefer
Affiliation:
Max-Planck-Institut für Quantenoptik, Garching, Germany Department für Physik, Ludwig-Maximilians-Universität München, Garching, Germany
R. Hörlein
Affiliation:
Max-Planck-Institut für Quantenoptik, Garching, Germany Department für Physik, Ludwig-Maximilians-Universität München, Garching, Germany
J. Schreiber
Affiliation:
Max-Planck-Institut für Quantenoptik, Garching, Germany Department für Physik, Ludwig-Maximilians-Universität München, Garching, Germany
T. Tajima
Affiliation:
Max-Planck-Institut für Quantenoptik, Garching, Germany Photomedical Research Center, JAEA, Kyoto, Japan
D. Habs
Affiliation:
Max-Planck-Institut für Quantenoptik, Garching, Germany Department für Physik, Ludwig-Maximilians-Universität München, Garching, Germany
W. Sandner
Affiliation:
Max-Born-Institut, Berlin, Germany Technische Universität Berlin, Berlin, Germany
Corresponding
E-mail address:

Abstract

Advancement of ion acceleration by intense laser pulses is studied with ultra-thin nanometer-thick diamond like carbon and micrometer-thick Titanium target foils. Both investigations aim at optimizing the electron density distribution which is the key for efficient laser driven ion acceleration. While recently found maximum ion energies achieved with ultra-thin foils mark record values micrometer thick foils are flexible in terms of atomic constituents. Electron recirculation is one prerequisite for the validity of a very simple model that can approximate the dependence of ion energies of nanometer-thick targets when all electrons of the irradiated target area interact coherently with the laser pulse and Coherent Acceleration of Ions by Laser pulses (CAIL) becomes dominant. Complementary experiments, an analytical model and particle in cell computer simulations show, that with regard to ultra-short laser pulses (duration ~45 fs at intensities up to 5 × 1019 W/cm2) and a micrometer-thick target foil with higher atomic number a close to linear increase of ion energies manifests in a certain range of laser intensities.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

Andreev, A.A., Steinke, S., Sokollik, T., Schnurer, M., Ter Avetsiyan, S., Platonov, K.Y. & Nickles, P.V. (2009). Optimal ion acceleration from ultrathin foils irradiated by a profiled laser pulse of relativistic intensity. Phys. Plasmas 16, 013103.CrossRefGoogle Scholar
Andreev, A.A. & Platonov, K.V. (2011). Hybrid model of ion acceleration in laser plasma of flat heterogeneous target. Opt. Spectr. 111, 191199.CrossRefGoogle Scholar
Andreev, A.A., Steinke, S., Schnuerer, M., Henig, A., Nickles, P.V., Platonov, K.Y., Sokolik, T. & Sandner, W. (2010). Hybrid ion acceleration with ultrathin composite foils irradiated by high intensity circularly-polarized laser light. Phys. Plasmas 17, 123111.CrossRefGoogle Scholar
Augst, S., Meyerhofer, D.D., Strickland, D. & Chin, S.L. (1991). Laser ionization of noble-gases by coulomb-barrier suppression. J. Opt. Soc. Am. B 8, 858867.CrossRefGoogle Scholar
Badziak, J., Woryna, E., Parys, P., Platonov, K.Y., Jablonski, S., Ryc, L.,Vankov, A.B. & Wolowski, J. (2001). Fast proton generation from ultrashort laser pulse interaction with double-layer foil targets. Phys. Rev. Lett. 87, 215001/14.CrossRefGoogle ScholarPubMed
Badziak, J., Woryna, E., Parys, P., Wolowski, J., Platonov, K.Y. & Vankov, A.B. (2002). Effect of foil target thickness on fast proton generation driven by ultrashort-pulse laser. J. Appl. Phys. 91, 55045506.CrossRefGoogle Scholar
Badziak, J., Jablonski, S., Parys, P., Szydlowski, A., Fuchs, J.& Mancic, A. (2010). Production of high-intensity proton fluxes by a 2ω Nd:glass laser beam. Laser Part. Beams 28, 575583.CrossRefGoogle Scholar
Brenner, C.M., Green, J.S., Robinson, A.P.L., Carroll, D.C., Dromey, B., Foster, P.S., Kar, S., Li, Y.T., Markey, K., Spindloe, C., Streeter, M.J.V., Tolley, M., Wahlström, C.-G., Xu, M.H., Zepf, M., McKenna, P. & Neely, D. (2011). Dependence of laser accelerated protons on laser energy following the interaction of defocused, intense laser pulses with ultra-thin targets. Laser Part. Beams 29, 345351.CrossRefGoogle Scholar
Borghesi, M., Audebert, P., Bulanov, S.V., Cowan, T., Fuchs, J., Gauthier, J.C., Mackinnon, A.J., Patel, P.K., Pretzler, G., Romagnani, L., Schiavi, A., Toncian, T. & Willi, O. (2005). High-intensity laser-plasma interaction studies employing laser-driven proton probes. Laser Part. Beams 23, 291295.CrossRefGoogle Scholar
Ceccotti, T., Levy, A., Popescu, H., Reau, F., D'oliveira, P., Monot, P., Geindre, J.P., Lefebvre, E. & Martin, P. (2007). Proton acceleration with high-intensity ultrahigh-contrast laser pulses. Phys. Rev. Lett. 99, 185002.CrossRefGoogle ScholarPubMed
Cowan, T.E., Fuchs, J., Ruhl, H., Kemp, A., Audebert, P., Roth, M., Stephens, R., Barton, I., Blazevic, A., Brambrink, E., Cobble, J., Fernandez, J., Gauthier, J.C., Geissel, M., Hegelich, M., Kaae, J., Karsch, S., Le Sage, G.P., Letzring, S., Manclossi, M., Meyroneinc, S., Newkirk, A., Pepin, H. & Renard-Legalloudec, N. (2004). Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204801.CrossRefGoogle ScholarPubMed
Esirkepov, T., Yamagiwa, M. & Tajima, T. (2006). Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations. Phys. Rev. Lett. 96, 105001.CrossRefGoogle ScholarPubMed
Flacco, A., Cecotti, T., George, H., Monot, P., Martin, Ph., Réau, F.,Tscherbakoff, O., D'Oliveira, P., Sylla, F., Veltcheva, M., Burgy, F., Tafzi, A.,Malka, V. & Batani, D. (2010). Comparative study of laser ion acceleration with different contrast enhancement techniques. Nucl. Instrum. Meth. Phys. Res. A 620, 1822.CrossRefGoogle Scholar
Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C. & Yasuike, K. (2000). Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7, 20762082.CrossRefGoogle Scholar
Henig, A., Kiefer, D., Markey, K., Gauthier, D.C., Flippo, K.A., Letzring, S., Johnson, R.P., Shimada, T., Yin, L., Albright, B.J., Bowers, K.J., Fernandez, J.C., Rykovanov, S.G., Wu, W.C., Zepf, M., Jung, D., Liechtenstein, V.Kh., Schreiber, J., Habs, D. & Hegelich, B.M. (2009 a). Enhanced laser-driven ion acceleration in the relativistic transparency regime. Phys. Rev. Lett. 103, 045002.CrossRefGoogle ScholarPubMed
Henig, A., Steinke, S., Schnurer, M., Sokollik, T., Horlein, R., Kiefer, D., Jung, D., Schreiber, J., Hegelich, B.M., Yan, X.Q., Meyer-Ter-Vehn, J., Tajima, T., Nickles, P.V., Sandner, W. & Habs, D. (2009 b). Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 103, 245003.CrossRefGoogle ScholarPubMed
Kaluza, M., Schreiber, J., Santala, M.I.K., Tsakiris, G.D., Eidmann, K., Meyer-Ter-Vehn, J. & Witte, K.J. (2004). Influence of the laser prepulse on proton acceleration in thin-foil experiments. Phys. Rev. Lett. 93, 045003.CrossRefGoogle ScholarPubMed
Kiefer, D., Henig, A., Jung, D., Gautier, D.C., Flippo, K.A., Gaillard, S.A., Letzring, S., Johnson, R., Shah, R.C., Shimada, T., Fernández, J.C., Liechtenstein, V.Kh., Schreiber, J., Hegelich, B.M. & Habs, D. (2009). First observation of quasi-monoenergetic electron bunches driven out of ultra-thin diamond-like carbon (DLC) foils. Euro. Phys. J. D 55, 427.CrossRefGoogle Scholar
Klimo, O., Psikal, J., Limpouch, J. & Tikhonchuk, V.T. (2008). Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses. Phys. Rev. 11, 031301.Google Scholar
Kraft, S.D., Richter, C., Zeil, K., Baumann, M., Beyreuther, E., Bock, S., Busmann, M., Cowan, T.E., Dammene, Y., Enghardt, W., Helbig, U., Karsch, L.Kluge, T., Laschinsky, L., Lessmann, E., Metzkes, J., Naumburger, D., Sauerbrey, R., Schürer, M., Sobiella, M., Woithe, J., Schramm, U. & Pawelke, J. (2010). Dose-dependent biological damage of tumor cells by laser-accelerated proton beams. New J. Phys. 12, 085003.CrossRefGoogle Scholar
Levy, A., Ceccotti, T., D'oliveira, P., Reau, F., Perdrix, M., Quere, F., Monot, P., Bougeard, M., Lagadec, H., Martin, P., Geindre, J.P. & Audebert, P. (2007). Double plasma mirror for ultrahigh temporal contrast ultraintense laser pulses. Opt. Lett. 32, 310312.CrossRefGoogle ScholarPubMed
Lundh, O., Lindau, F., Persson, A., Wahlstrom, C.G., Mckenna, P. & Batani, D. (2007). Influence of shock waves on laser-driven proton acceleration. Phys. Rev. E 76, 26404.CrossRefGoogle ScholarPubMed
MaCchi, A., Veghini, S. & Pegoraro, F. (2009). “Light sail” acceleration reexamined. Phys. Rev. Lett. 103, 085003.CrossRefGoogle ScholarPubMed
MaCchi, A., Veghini, S., Liseykina, T.V. & Pegoraro, F. (2009). Radiation pressure acceleration of ultrathin foils. New J. Phys. 12, 045013.CrossRefGoogle Scholar
Mackinnon, A.J., Patel, P.K., Town, R.P., Edwards, M.J., Phillips, T., Lerner, S.C., Price, D.W., Hicks, D., Key, M.H., Hatchett, S., Wilks, S.C., Borghesi, M., Romagnani, L., Kar, S., Toncian, T., Pretzler, G., Willi, O., Koenig, M., Martinolli, E., Lepape, S., Benuzzi-Mounaix, A., Audebert, P., Gauthier, J.C., King, J., Snavely, R., Freeman, R.R. & Boehlly, T. (2004). Proton radiography as an electromagnetic field and density perturbation diagnostic (invited). Rev. Sci. Instr. 75, 35313536.CrossRefGoogle Scholar
Mckenna, P., Carroll, D.C., Lundh, O., Nürnberg, F., Markev, K., Bandyopadhyay, S., Batani, D., Evans, R.G., Jafer, R., Kar, S., Neely, D., Pepler, D., Quinn, M.N., Redaelli, R., Roth, M., Wahlström, C.G., Yuan, X.H. & Zepf, M. (2008). Effects of front surface plasma expansion on proton acceleration in ultraintense laser irradiation of foil targets. Laser Part. Beams 26, 591596.CrossRefGoogle Scholar
Neely, D., Foster, P., Robinson, A., Lindau, F., Lundh, O., Persson, A., Wahlstrom, C.G. & Mckenna, P. (2006). Enhanced proton beams from ultrathin targets driven by high contrast laser pulses. Appl. Phys. Lett. 89, 021502.CrossRefGoogle Scholar
Nickles, P.V., Schnurer, M., Sokollik, T., Ter-Avetisyan, S., Sandner, W., Amin, M., Toncian, T., Willi, O. & Andreev, A. (2008). Ultrafast laser-driven proton sources and dynamic proton imaging. J. Opt. Soc. Am. B 25, B155B160.CrossRefGoogle Scholar
Pae, K.H., Choi, I. W. & Lee, J. (2011). Effect of target composition on proton acceleration by intense laser pulses in the radiation pressure regime, Laser Part. Beams 29, 1116.CrossRefGoogle Scholar
Prasad, R., Ter-Avetisyan, S., Doria, D., Quinn, K.E., Romagnani, L, Foster, P.S., Brenner, C.M., Green, J.S., Gallegos, P, Streeter, M.J.V., Carroll, D.C., Tresca, O., Dover, N.P., Palmer, C.A.J., Schreiber, J., Neely, D., Najmudin, Z., Mckenna, P., Zepf, M. & Borghesi, M. (2011). Proton acceleration using 50 fs, high intensity ASTRA-Gemini laser pulses, Nucl. Instrum. Phys. Res. A doi:10.1016/j.nima.2011.01.021.CrossRefGoogle Scholar
Romagnani, L., Fuchs, J., Borghesi, M., Antici, P., Audebert, P., Ceccherini, F., Cowan, T., Grismayer, T., Kar, S., Macchi, A., Mora, P., Pretzler, G., Schiavi, A., Toncian, T. & Willi, O. (2005). Dynamics of electric fields driving the laser acceleration of multi-MeV protons. Phys. Rev. Lett. 95, 195001.CrossRefGoogle ScholarPubMed
Schnurer, M., Ter-Avetisyan, S., Busch, S., Risse, E., Kalachnikov, M.P., Sandner, W. & Nickles, P. (2005). Ion acceleration with ultrafast laser driven water droplets. Laser Part. Beams 23, 337343.CrossRefGoogle Scholar
Schreiber, J., Bell, F., Grüner, F., Schramm, U., Geissler, M., Schnürer, M., Ter-Avetisyan, S., Hegelich, B.M, Cobble, J., Brambrink, E., Fuchs, J., Audebert, P. & Habs, D. (2006). Analytical model for ion acceleration by high-intensity laser pulses. Phys. Rev. Lett. 97, 045005.CrossRefGoogle ScholarPubMed
Sokollik, T., Schnurer, M., Steinke, S., Nickles, P.V., Sandner, W., Amin, M., Toncian, T., Willi, O. & Andreev, A.A. (2009). Directional laser-driven ion acceleration from microspheres. Phys. Rev. Lett. 103, 135003.CrossRefGoogle ScholarPubMed
Sokollik, T., Paasch-Colberg, , Gorling, K., Eichmann, U., Schnurer, M., Steinke, S., Nickles, P.V., Andreev, A.A. & Sandner, W. (2010). Laser driven ion acceleration using mass-limited targets. New J. Phys. 12, 113013.CrossRefGoogle Scholar
Steinke, S., Henig, A., Schnurer, M., Sokollik, T., Nickles, P.V., Jung, D., Kiefer, D., Horlein, R., Schreiber, J., Tajima, T., Yan, X.Q., Hegelich, M., Meyer-Ter-Vehn, J., Sandner, W. & Habs, D. (2010). Efficient ion acceleration by collective laser-driven electron dynamics with ultra-thin foil targets. Laser Part. Beams 28, 215221.CrossRefGoogle Scholar
Steinke, S., Schnurer, M., Sokollik, T., Andreev, A.A., Nickles, P.V., Henig, A., Horlein, R., Kiefer, D., Jung, D., Schreiber, J., Tajima, T., Hegelich, M., Habs, D. & Sandner, W. (2011). Optimization of laser-generated ion beams. Conrib. Plasma Phys. 51, 444450.CrossRefGoogle Scholar
Tajima, T., Habs, D. & Yan, X.Q. (2009). Laser acceleration of ions for radiation therapy. Rev. Acc. Sci. Technol. 2, 201228.CrossRefGoogle Scholar
Ter-Avetisyan, S., Schnurer, M. & Nickles, P.V. (2005). Time resolved corpuscular diagnostics of plasmas produced with high-intensity femtosecond laser pulses. J. Phys. D 38, 863867.CrossRefGoogle Scholar
Torrisi, L., Caridi, F. & Giuffrida, L. (2011). Protons and ion acceleration from thick targets at 1010 W/cm2 laser pulse intensity. Laser Part. Beams 29, 2937.CrossRefGoogle Scholar
Weichsel, J., Fuchs, T., Lefebvre, E., D'humieres, E. & Oelfke, U. (2008). Spectral features of laser-accelerated protons for radiotherapy applications. Phys. Med. Bio. 53, 43834397.CrossRefGoogle ScholarPubMed
Willingale, L., Nilson, P.M., Kaluza, M.C., Dangor, A.E., Evans, R.G., Fernandes, P., Haines, M.G., Kamperidis, C., Kingham, R.J., Ridgers, C.P., Sherlock, M., Thomas, A.G.R., Wei, M.S., Najmudin, Z., Krushelnick, K., Bandyopadhyay, S., Notley, M., Minardi, S., Tatarakis, M. & Rozmus, W. (2010). Proton deflectometry of a magnetic reconnection geometry. Phys. Plasmas 17, 043104.CrossRefGoogle Scholar
Yan, X.Q., Lin, C., Sheng, Z.M., Guo, Z.Y., Liu, B.C., Lu, Y.R., Fang, J.X. & Chen, J.E. (2008). Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. Phys. Rev. Lett 100, 135003.CrossRefGoogle ScholarPubMed
Yan, X.Q., Tajima, T., Hegelich, M., Yin, L. & Habs, D. (2010). Theory of laser ion acceleration from a foil target of nanometer thickness. Appl. Phys. B 98, 711721.CrossRefGoogle Scholar
Zeil, K., Kraft, S.D., Bock, S., Bussmann, M., Cowan, T.E., Kluge, T., Metzkes, J., Richter, T., Sauerbrey, R. & Schramm, U. (2010). The scaling of proton energies in ultrashort pulse laser plasma acceleration. New J. Phys. 12, 045015.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 4
Total number of PDF views: 37 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 21st January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-7fh6l Total loading time: 0.39 Render date: 2021-01-21T03:27:20.684Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Comparison of femtosecond laser-driven proton acceleration using nanometer and micrometer thick target foils
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Comparison of femtosecond laser-driven proton acceleration using nanometer and micrometer thick target foils
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Comparison of femtosecond laser-driven proton acceleration using nanometer and micrometer thick target foils
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *