Skip to main content Accessibility help
×
Home

40 GW Linear Transformer Driver stage for pulse generators of Mega-ampere range

  • B.M. Kovalchuk (a1), A.V. Kharlov (a1), A.A. Zherlitsyn (a1), E.V. Kumpjak (a1), N.V. Tsoy (a1), V.A. Vizir (a1) and G.V. Smorudov (a1)...

Abstract

Linear transformer driver (LTD) technology is actively developed at the Institute of High Current Electronics in Tomsk, Russia. This technology is being examined for use in high current high voltage pulsed accelerators. Recent development of high voltage low inductance capacitors and low inductance switches enabled to achieve ~100 ns rise time of the LTD output pulse. This technique allows one to eliminate intermediate pulse forming sections, used in the present accelerator technology, which would keep the footprint of an LTD accelerator small. LTD based drivers are currently considered for many applications, including future very high current Z-pinch drivers for inertial confinement fusion, medium current drivers with adjustable pulse length for isentropic compression experiments, and finally relatively low current accelerators for radiography and X-pinches. In this article, we present the design and test results for a new LTD stage, that operates at 100 kV charging voltage. Current amplitude up to 850 kA with ~140 ns rise time was obtained on a 0.05 Ω load. Stack of the LTD stages can be easily assembled in series or in parallel, thus providing voltage or current multiplication, respectively. Design of multi-mega-volt and multi-mega-ampere generators becomes straightforward with the LTD technology.

Copyright

Corresponding author

Address correspondence and reprint requests to: A.V. Kharlov, 2/3 Academichesky Ave., 634055, Tomsk, Russia. E-mail akharlov@lef.hcei.tsc.ru

References

Hide All
Anatskii, A.I., Bogashev, O.S., Bukaev, P.V., Yakhruskin, Yu.P., Malyshev, I.F., Nalivaika, G.A., Pavlovskii, A.I., Suslov, V.A. & Khalchitski, E.P. (1966). High current ironless linear accelerator. Sov. At. Energy 2k, 1134.
Andreev, S.I. & Orlov, B.I. (1966). Development of a spark discharge. I. Sov. Phys.-Techn. Phys. 10, 10971104.
Antici, P., Fazi, M., Lombardi, A., Migliorati, M., Palumbo, L., Audeber, P. & Fuchs, J. (2008). Numerical study of a linear accelerator using laser-generated proton beams as a source. J. Appl. Phys. 104, 124901.
Bastrikov, A.N., Vizir, V.A., Volkov, S.N., Durakov, V.G., Efremov, A.M., Zorin, V.B., Kim, A.A., Kovalchuk, B.M., Kumpyak, E.V., Loginov, S.V., Sinebryukhov, V.A., Tsou, N.V., Chervyakov, V.V., Yakovlev, V.P. & Mesyats, G.A. (2003). Primary energy storages based on linear transformer stages. Laser Part. Beams 21, 295299.
Bennett, G.R., Sinars, D.B., Wenger, D.F., Cuneo, M.E., Adams, R.G., Barnard, W.J., Beutler, D.E., Burr, R.A., Campbell, D.V., Claus, L.D., Foresi, J.S., Johnson, D.W., Keller, K.L., Lackey, C., Leifeste, G.T., McPherson, L.A., Mulville, T.D., Neely, K.A., Rambo, P.K., Rovang, D.C., Ruggles, L.E., Porter, J.L., Simpson, W.W., Smith, I.C. & Speas, C.S. (2006). High-brightness, high-spatial-resolution, 6.151 keV X-ray imaging of inertial confinement fusion capsule implosion and complex hydrodynamics experiments on Sandia's Z accelerator. Rev. Sci. Instrum. 77, 10E322.
Bogdan, O.V., Karas, V.I., Kornilov, E.A. & Manuilenko, O.V. (2008). 2.5-dimensional numerical simulation of a high-current ion linear induction accelerator. Plasma Phys. Rpt. 34, 667677.
Braginskii, S.I. (1958). Theory of the development of a spark channel. Sov. Phys. JETP 34, 1068.
Chen, Z.L., Unick, C., Vafaei-Najafabadi, N., Tsui, Y.Y., Fedosejevs, R., Naseri, N., Masson-Laborde, P.E. & Rozmus, W. (2008). Quasi-monoenergetic electron beams generated from 7 TW laser pulses in N-2 and He gas targets. Laser Part. Beams 26, 147155.
Christofilos, N.C., Hester, R.E., Lamb, W.A.S., Reagan, D.D., Sherwood, W.A. & Wright, R.E. (1964). High current linear induction accelerator for electrons, Rev. Sci. Instrum. 35, 886890.
Ekdahl, C. (2002). Modern electron accelerators for radiography. IEEE Trans. Plasma Sci. 30, 254261.
Ekdahl, C., Abeyta, E.O., Aragon, P., Archuleta, R., Bartsch, R., Bender, H., Briggs, R., Broste, W., Carlson, C., Eversole, S., Frayer, D., Gallegos, R., Harrison, J., Hughes, T., Jacquez, E., Johnson, D., Johnson, J., McCuistian, B.T., Montoy, A.N., Mostrom, C., Nath, S., Oro, D., Rowton, L., Sanchez, M., Scarpetti, R., Schauer, M., Schulze, M., Tang, Y., Tipton, A. & Tom, C.Y. (2006). Long-pulse beam stability experiments on the DARHT-II linear induction accelerator. IEEE Trans. Plasma Sci. 34, 460466.
Humphries, S. Jr (1986). Principles of Charged Particle Acceleration. New York: Wiley-Interscience.
Kharlov, A.V., Kovalchuk, B.M. & Zorin, V.B. (2006). Compact high current generator for x-ray radiography. Rev. Sci. Instrum. 77, 123501.
Kovalchuk, B.M., Kumpjak, E.V., Tsoi, N.V., Kim, A.A., Avrillaud, G., Courtois, L., Guerre, J., Hereil, P.L., Lassalle, F., Bayol, F. & L'Eplattenier, P. (2003). GEPI: A compact pulse power driver for isentropic compression experiments and for non shocked high velocity flyer plates, pp. 913916. Proc. 14th IEEE Intern. Pulsed Power Conf. Dallas, Texas.
Kovalchuk, B.M., Vizir, V.A., Kim, A.A., Kumpjak, E.V., Loginov, S.V., Bastrikov, A.N., Chervyakov, V.V., Tsoy, N.V., Monjaux, P. & Huet, D. (1997). Fast primary storage device utilizing a linear pulse transformer. Russian Phys. J. 40, 11421153.
Kovalchuk, B.M., Kim, A.A., Kumpjak, E.V. & Tsoy, N.V. (1999). Linear transformer driver with 750-kA current and 400-ns current rise time. Russian Phys. J. 42, 985989.
Kremnev, V.V., Kovalchuk, B.M., Kim, A.A., Kumpjak, E.V., Bastrikov, A.N., Novikov, A.A. & Tsoy, N.V. (1997). Low inductance multigap spark modules. Russian Phys. J. 40, 11251134.
Li, G.L., Yuan, C.W., Zhang, J.Y., Shu, T. & Zhang, J. (2008). A diplexer for gigawatt class high power microwaves. Laser Part. Beams 26, 371377.
Liu, J.L., Yin, Y., Ge, B., Zhan, T.W., Chen, X.B., Feng, J.H., Shu, T., Zhang, J.D. & Wang, X.X. (2007). An electron-beam accelerator based on spiral water PFL. Laser Part. Beams 25, 593599.
Liu, R., Zou, X., Wang, X., He, L. & Zeng, N. (2008). X-pinch experiments with pulsed power generator (PPG-1) at Tsinghua University. Laser Part. Beams 26, 3336.
Mangles, S.P.D., Walton, B.R., Najmudin, Z., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006). Table-top laser-plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.
Mazarakis, M.G., Fowler, W.E., McDaniel, D.H., Olson, C.L., Sonrisa, T., Struve, K.W., Stugar, W.A., Kim, A.A. & Sinebryukhov, V.A. (2007). High current linear transformer driver (LTD) experiments. Proc. 16th IEEE Intern. Pulsed Power Conference. Albuquerque, New Mexico.
Merle, E., Bombardier, F., Delvaux, J., Mouillet, M., Pierret, O., Ribes, J.C. & Vermare, C. (2002). Progress with the 2-3 kA AIRIX electron beam. Proc. European Particle Accelerator conference. Paris, France.
Miller, R.B., Marder, B.M., Coleman, P.D. & Clark, R.E. (1988). The effect of accelerating gap geometry on the beam breakup instability in linear induction accelerators. J. Appl. Phys. 63, 9971008.
Pavlovskii, A.I., Bossamykin, V.S., Kuleshov, G.D., Gerasimov, A.I., Tananakin, V.A. & Klementiev, A.P. (1975). Multi-element accelerators with radial lines. Sov. Phys. Dokl. 20, 441444.
Pavlovskii, A.I., Bossamykin, V.S., Gerasimov, A.I., Tananakin, V.A., Fedotkin, A.S., Morunov, K.A., Basmanov, V.F., Skripka, G.M., Tarasov, A.D., Gordeev, V.S., Grishin, A.V., Anfinogenov, V.Ya., Gritsyna, V.P., Averchenkov, V.Ya., Lazarev, S.A., Gorkunov, V.S., Veresov, V.P., Koshelev, A.S. & Odintsov, Yu.M. (1998). High-power pulsed electron beam accelerator (LIA-30) with radial lines. Instr. Exper. Techn. 41, 154165.
Ramirez, J.J., Prestwich, K.R., Johnson, D.L., Corley, J.P., Denison, G.J., Alexander, J.A., Franklin, T.L., Pankuch, P.I., Sanford, T.W.L., Sheridan, T.J., Torrison, L.L. & Zawadzkas, G.A. (1989). Proc. of the 7th IEEE Pulsed Power Conference. Albuquerque, New Mexico.
Rose, D.V., Welch, D.R., Oliver, B.V., Leckbee, J.J., Maenchen, J.E., Johnson, D.L., Kim, A.A., Kovalchuk, B.M. & Sinebryukhov, V.A. (2006). Numerical analysis of a pulsed compact LTD system for electron beam-driven radiography. IEEE Trans. Plasma Sci. 34, 18791887.
Sanford, T.W.L. (1991). Dynamics of electron flows and radiation fields produced by electron-beam diodes on the HERMES III accelerator. Phys. Fluids B 3, 23872395.
Smith, I. (1979). Linear induction accelerators made from pulse-line cavities with external pulse injection. Rev. Sci. Instrum. 50, 714718.
Smith, I. (2004). Induction voltage adders and the induction accelerator family. Phys. Rev. ST Accel. Beams 7, 064801.
Stygar, W.A., Cuneo, M.E., Headley, D., Ives, H.C., Leeper, R.J., Mazarakis, M.G., Olson, C.L., Porter, J.L., Wagoner, T.C. & Woodworth, J.R. (2007). Architecture of petawatt-class z-pinch accelerators. Phys. Rev. ST Accel. Beams 10, 030401/24.
Vizir, V.A., Maksimenko, A.D., Manylov, V.I. & Smorudov, G.V. (2004). Submicrosecond pulsed high-power transformer magnetic cores. Proc. of 13th Symp. High Current Electronics. Tomsk, Russia.
Yatsui, K., Shimiya, K., Masugata, K., Shigeta, M. & Shibata, K. (2005). Characteristics of pulsed power generator by versatile inductive voltage adder. Laser Part. Beams 23, 573581.
Zherlitsyn, A.A., Kovalchuk, B.M. & Kumpjak, E.V. (2008). Investigation and simulation of the capacitor discharge through a multichannel spark gap. XII Intern. Conf. on Megagauss Magnetic Field. Novosibirsk, Russia.
Zhou, C.T., Yu, M.Y. & He, X.T. (2007). Electron acceleration by high current-density relativistic electron bunch in plasmas. Laser Part. Beams 25, 313319.

Keywords

Related content

Powered by UNSILO

40 GW Linear Transformer Driver stage for pulse generators of Mega-ampere range

  • B.M. Kovalchuk (a1), A.V. Kharlov (a1), A.A. Zherlitsyn (a1), E.V. Kumpjak (a1), N.V. Tsoy (a1), V.A. Vizir (a1) and G.V. Smorudov (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.