Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-13T14:38:03.908Z Has data issue: false hasContentIssue false

The motor system’s contribution to perception and understanding actions: clarifying mirror neuron myths and misunderstandings

Published online by Cambridge University Press:  13 February 2015

Department of Cognitive Sciences, University of California, Irvine
Address for correspondence: Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92697. e-mail:


Kemmerer’s critical review of my book The Myth of Mirror Neurons raises some important points regarding the relation between motor-centric and motor-modulatory models of perception and understanding. In addressing his critiques I hope to clarify that there is growing agreement that motor-centric models are untenable, while motor-modulatory models are viable but still face theoretical and empirical hurdles.

Research Article
Copyright © UK Cognitive Linguistics Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Buchsbaum, B., Hickok, G., & Humphries, C. (2001). Role of left posterior superior temporal gyrus in phonological processing for speech perception and production. Cognitive Science, 25, 663678.Google Scholar
Catmur, C., Walsh, V., & Heyes, C. (2007). Sensorimotor learning configures the human mirror system. Current Biology, 17(17), 15271531.Google Scholar
Cavallo, A., Heyes, C., Becchio, C., Bird, G., & Catmur, C. (2014). Timecourse of mirror and counter-mirror effects measured with transcranial magnetic stimulation. Social Cognitive and Affective Neuroscience, 9(8), 10821088.Google Scholar
Csibra, G. (2007). Action mirroring and action understanding: an alternative account. In Haggard, P., Rosetti, Y., & Kawato, M. (Eds.), Sensorimotor foundations of higher cognition: attention and performance XII (pp. 453459). Oxford: Oxford University Press.Google Scholar
D’Ausilio, A., Pulvermuller, F., Salmas, P., Bufalari, I., Begliomini, C., & Fadiga, L. (2009). The motor somatotopy of speech perception. Current Biology, 19(5), 381385.Google Scholar
di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: a neurophysiological study. Experimental Brain Research, 91(1), 176180.Google Scholar
Ferrari, P. F., Maiolini, C., Addessi, E., Fogassi, L., & Visalberghi, E. (2005). The observation and hearing of eating actions activates motor programs related to eating in macaque monkeys. Behavioural Brain Research, 161(1), 95101.Google Scholar
Gallese, V. (2001). The ‘shared manifold’ hypothesis: from mirror neurons to empathy. Journal of Consciousness Studies, 8, 3350.Google Scholar
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593609.Google Scholar
Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2(12), 493501.Google Scholar
Hauk, O., Johnsrude, I., & Pulvermuller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41(2), 301307.Google Scholar
Heyes, C. (2010). Where do mirror neurons come from? Neuroscience & Biobehavioral Reviews, 34(4), 575583.Google Scholar
Hickok, G. (2012). Computational neuroanatomy of speech production. Nature Reviews Neuroscience, 13(2), 135145.Google Scholar
Hickok, G. (2014). The myth of mirror neurons: the real neuroscience of communication and cognition. New York, NY: W.W. Norton & Company.Google Scholar
Hickok, G., Buchsbaum, B., Humphries, C., & Muftuler, T. (2003). Auditory-motor interaction revealed by fMRI: speech, music, and working memory in area Spt. Journal of Cognitive Neuroscience, 15, 673682.Google Scholar
Hickok, G., & Hauser, M. (2010). (Mis)understanding mirror neurons. Current Biology, 20(14), R593594.Google Scholar
Hickok, G., Houde, J., & Rong, F. (2011). Sensorimotor integration in speech processing: computational basis and neural organization. Neuron, 69(3), 407422.Google Scholar
Hickok, G., Okada, K., & Serences, J. T. (2009). Area Spt in the human planum temporale supports sensory-motor integration for speech processing. Journal of Neurophysiology, 101(5), 27252732.Google Scholar
Isenberg, A. L., Vaden, K. I. Jr., Saberi, K., Muftuler, L. T., & Hickok, G. (2012). Functionally distinct regions for spatial processing and sensory motor integration in the planum temporale. Human Brain Mapping, 33(10), 24532463.Google Scholar
Kilner, J. M., Neal, A., Weiskopf, N., Friston, K. J., & Frith, C. D. (2009). Evidence of mirror neurons in human inferior frontal gyrus. Journal of Neuroscience, 29(32), 1015310159.Google Scholar
Pa, J., & Hickok, G. (2008). A parietal-temporal sensory-motor integration area for the human vocal tract: evidence from an fMRI study of skilled musicians. Neuropsychologia, 46, 362368.Google Scholar
Rizzolatti, G., & Arbib, M. (1998). Language within our grasp. Trends in Neurosciences, 21, 188194.Google Scholar
Sams, M., Mottonen, R., & Sihvonen, T. (2005). Seeing and hearing others and oneself talk. Brain Research: Cognitive Brain Research, 23(2/3), 429435.Google Scholar
Schomers, M. R., Kirilina, E., Weigand, A., Bajbouj, M., & Pulvermuller, F. (2014). Causal influence of articulatory motor cortex on comprehending single spoken words: TMS evidence. Cerebral Cortex.Google Scholar
Tremblay, S., Shiller, D. M., & Ostry, D. J. (2003). Somatosensory basis of speech production. Nature, 423(6942), 866869.Google Scholar
van Wassenhove, V., Grant, K. W., & Poeppel, D. (2005). Visual speech speeds up the neural processing of auditory speech. Proceedings of the National Academy of Sciences, 102(4), 11811186.Google Scholar
Willems, R. M., Labruna, L., D’Esposito, M., Ivry, R., & Casasanto, D. (2011). A functional role for the motor system in language understanding: evidence from theta-burst transcranial magnetic stimulation. Psychological Science, 22(7), 849854.Google Scholar