## References

Campos, M., Krohling, R. A. & Enriquez, I.
2014. Bare bones particle swarm optimization with
scale matrix adaptation.
*IEEE Transactions* on *Cybernetics*
44(9),
1567–1578.

Chen, C.-H., Liu, T.-K. & Chou, J.-H.
2013. Integrated short-haul airline crew scheduling
using multiobjective optimization genetic algorithms.
IEEE Transactions on Systems, Man, and Cybernetics: Systems
43(5),
1077–1090.

Duman, S., Güvenç, U., Sönmez, Y. & Yörükeren, N.
2012. Optimal power flow using gravitational search
algorithm. Energy Conversion and Management
59,
86–95.

Holland, J. H.
1992. Genetic algorithms.
Scientific American
267(1),
66–72.

Jan, G. E., Sun, C. C., Tsai, W. C. & Lin, T. H.
2014. An O (n log n) shortest path algorithm based
on Delaunay triangulation. IEEE/ASME
Transactions on Mechatronics
19(2),
660–666.

Kennedy, J. & Eberhart, R.
1992. Particle swarm optimization. In *Proceedings of the
IEEE International Conference on Neural Networks*,
66–72.

Konar, A., Chakraborty, I. G., Singh, S. J., Jain, L. C. & Nagar, A. K.
2013. A deterministic improved Q-learning for path
planning of a mobile robot. IEEE Transactions on
Systems, Man, and Cybernetics: Systems
43(5),
1141–1153.

Koren, Y. & Borenstein, J.
1991. Potential field methods and their inherent limitations for
mobile robot navigation. In *Proceedings of the 1991 IEEE International
Conference on Robotics and Automation*,
1398–1404.

Kuo, P.-H. & Li, T.-H. S.
2011. Development of simulator for AndroSot in FIRA. In
*Proceedings of the FIRA 2011, CCIS*
**212**, 233–240.

Lu, W., Zhang, G. & Ferrari, S.
2014. An information potential approach to
integrated sensor path planning and control.
*IEEE Transactions* on *Robotics*
30(4),
919–934.

Rashedi, E., Nezamabadi-Pour, H. & Saryazdi, S.
2009. GSA: a gravitational search
algorithm. Information Sciences
179(13),
2232–2248.

Shaw, B., Mukherjee, V. & Ghoshal, S. P.
2012. A novel opposition-based gravitational search
algorithm for combined economic and emission dispatch problems of power
systems. International Journal of Electrical Power
& Energy Systems
35(1),
21–33.

Shimoda, S., Kuroda, Y. & Iagnemma, K.
2005. Potential field navigation of high speed unmanned ground
vehicles on uneven terrain. In *Proceedings of the 2005 IEEE
International Conference on Robotics and Automation*,
2839–2844. http://ieeexplore.ieee.org/document/1570542/.
Sun, X., Gong, D., Jin, Y. & Chen, S.
2013. A new surrogate-assisted interactive genetic
algorithm with weighted semisupervised learning.
*IEEE Transactions* on *Cybernetics*
43(2),
685–698.

Tu, K.-Y. & Baltes, J.
2006. Fuzzy potential energy for a map approach to
robot navigation. Robotics and Autonomous
Systems
54(7),
574–589.

Weindler, P., Wiltschko, R. & Wiltschko, W.
1996. Magnetic information affects the stellar
orientation of young bird migrants. Nature
383,
158–160.

Yazici, A., Kirlik, G., Parlaktuna, O. & Sipahioglu, A.
2014. A dynamic path planning approach for
multirobot sensor-based coverage considering energy
constraints. IEEE Transactions on
Cybernetics
44(3),
305–314.

Yoon, Y. & Kim, Y.-H.
2013. An efficient genetic algorithm for maximum
coverage deployment in wireless sensor networks.
IEEE Transactions on Cybernetics
43(5),
1473–1483.

Zhigang, R., Aimin, Z., Changyun, W. & Zuren, F.
2014. A scatter learning particle swarm optimization
algorithm for multimodal problems. IEEE Transactions
on Cybernetics
44(7),
1127–1140.