## References

Bäck, T., Fogel, D. & Michalewicz, Z. (eds) 1997. Handbook of Evolutionary Computation, IOP Publishing and Oxford University Press.

Back, T., Hammel, U. & Schwefel, H.-P.1997. Evolutionary computation: comments on the history and current state. *IEEE Transactions on Evolutionary Computation* 1(1), 3–17.

Bäck, T. & Schwefel, H.-P.1996. Evolutionary computation: an overview. In Proceedings of the Third IEEE Conference on Evolutionary Computation, T. Fukuda & T. Furuhashi (eds), 20–29. IEEE Press.

Bouvry, P., González-Vélez, H. & Kołodziej, J.2011. Intelligent Decision Systems in Large-Scale Distributed Environments, Springer.

Bui, L. T., Essam, D., Abbas, H. A. & Green, D.2004. Performance analysis of evolutionary multiobjective optimization methods in noisy environments. In *8th Asia Pacific Symposium on Intelligent and Evolutionary Systems*, Monash University.

Byrski, A., Debski, R. & Kisiel-Dorohinicki, M.2012. Agent-based computing in an augmented cloud environment. Computer Systems Science and Engineering 27(1), 5–20.

Byrski, A., Dobrowolski, J. & Toboła, K.2008. Agent-based optimization of neural classifiers. In *Conference on Evolutionary Computation and Global Optimization 2008*, June 2–4.

Byrski, A. & Kisiel-Dorohinicki, M.2007. Agent-based evolutionary and immunological optimization. In *Proceedings of 7th International Conference on Computational Science – ICCS 2007*. Springer, May 27–30.

Byrski, A., Kisiel-Dorohinicki, M. & Carvalho, M.2010. A crisis management approach to mission survivability in computational multi-agent systems. Computer Science 11, 99–113.

Cantú-Paz, E.1995. *A Summary of Research on Parallel Genetic Algorithms*. IlliGAL Report No. 95007, University of Illinois.

Cetnarowicz, K.1996. Evolution in multi-agent world = genetic algorithms + aggregation + escape. In *7th European Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW’ 96)*. Vrije Universiteit Brussel, Artificial Intelligence Laboratory.

Cetnarowicz, K., Kisiel-Dorohinicki, M. & Nawarecki, E.1996. The application of evolution process in multi-agent world (MAW) to the prediction system. In Proceedings of the 2nd International Conference on Multi-Agent Systems (ICMAS’96), M. Tokoro (ed.), 26–32. AAAI Press.

Chen, S.-H., Kambayashi, Y. & Sato, H.2011. Multi-Agent Applications with Evolutionary Computation and Biologically Inspired Technologies, IGI Global.

Coello Coello, C. A., Lamont, G. B. & Van Veldhuizen, D. A.2007. Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edition. Kluwer Academic Publishers.

Dasgupta, D. & Nino, L.2008. Immunological Computation Theory and Applications, Auerbach.

de Castro, L. N.2006. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. CRC Computer and Information Science Series. Chapman and Hall.

de Jong, K.2002. Evolutionary Computation, A Bradford Book.

Deb, K.2001. Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons.

Digalakis, J. & Margaritis, K.2002. An experimental study of benchmarking functions for evolutionary algorithms. International Journal of Computer Mathematics 79(4), 403–416.

Dresner, K. & Stone, P.2008. A multiagent approach to autonomous intersection management. Journal of Artificial Intelligence Research 31, 591–656.

Dreżewski, R.2003. A model of co-evolution in multi-agent system. In Multi-Agent Systems and Applications III, V. Mařík, J. Müller & M. Pĕchouček (eds), LNCS **2691**, 314–323. Springer-Verlag.

Dreżewski, R.2006. Co-evolutionary multi-agent system with speciation and resource sharing mechanisms. Computing and Informatics 25(4), 305–331.

Dreżewski, R. & Cetnarowicz, K.2007. Sexual selection mechanism for agent-based evolutionary computation. In Computational Science – ICCS 2007, Y. Shi, G. D. van Albada, J. Dongarra & P. M. A. Sloot (eds), LNCS **4488**, 920–927. Springer-Verlag.

Dreżewski, R. & Siwik, L.2010. A review of agent-based co-evolutionary algorithms for multi-objective optimization. In Computational Intelligence in Optimization. Application and Implementations, Springer-Verlag.

Fogel, D. B.1998. Evolutionary Computation: The Fossil Record. Selected Readings on the History of Evolutionary Computation, IEEE Press.

Fonseca, C. M. & Fleming, P. J.1995. An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation 3(1), 1–16.

Franklyn, S. & Graesser, A.1997. Is it an agent, or just a program?: a taxonomy for autonomous agents. In Intelligent Agents III: Agent Theories, Architectures and Languages. LNCS **1193/1997**, 21–35. Springer Verlag.

Fusinska, B., Kisiel-Dorohinicki, M. & Nawarecki, E.2007. Coevolution of a fuzzy rule base for classification problems. In *Rough Sets and Intelligent Systems Paradigms: International Conference, RSEISP 2007*, LNCS/LNAI **4585**, 678–686. Springer.

George, J., Gleizes, M., Glize, P. & Regis, C.2003. Real-time simulation for flood forecast: an adaptive multi-agent system staff. In *Proceedings of the AISB’03 Symposium on Adaptive Agents and Multi-Agent Systems*, University of Wales.

Horst, R. & Pardalos, P.1995. Handbook of Global Optimization, Kluwer Academic Publishers.

Jennings, N., Faratin, P., Johnson, M., Norman, T., OBrien, P. & Wiegand, M.1996. Agent-based business process management. International Journal of Cooperative Information Systems 5(2–3), 105–130.

Kisiel-Dorohinicki, M.2002. Agent-oriented model of simulated evolution. In SofSem 2002: Theory and Practice of Informatics, W. I. Grosky & F. Plasil (eds), LNCS **2540**, 253–261. Springer.

Lobel, B., Ozdaglar, A. & Feijer, D.2011. Distributed multi-agent optimization with state-dependent communication. Mathematical Programming 129(2), 255–284.

Mahfoud, S. W.1992. Crowding and preselection revisited. In Parallel Problem Solving from Nature – PPSN-II, R.Männer & B. Manderick (eds), Elsevier, 27–36.

Mahfoud, S. W.1995. *Niching Methods for Genetic Algorithms*. PhD thesis, University of Illinois at Urbana-Champaign.

McArthur, S., Catterson, V. & Hatziargyriou, N.2007. Multi-agent systems for power engineering applications. Part i: concepts, approaches, and technical challenges. IEEE Transactions on Power Systems 22(4), 1743–1752.

Moya, L. J. & Tolk, A.2007. Towards a taxonomy of agents and multi-agent systems. In *Proceedings of the 2007 Spring Simulation Multiconference – Volume 2*, Society for Computer Simulation International, 11–18.

Paredis, J.1995. Coevolutionary computation. Artificial Life 2(4), 355–375.

Pietak, K., Wós, A., Byrski, A. & Kisiel-Dorohinicki, M.2009. Functional integrity of multi-agent computational system supported by component-based implementation. In *Proceedings of the 4th International Conference on Industrial Applications of Holonic and Multi-Agent Systems*. Mařík, V., Strasser, T. & Zoitl, A. (eds), LNCS **5696**, 82–91. Springer Berlin Heidelberg.

Potter, M. A. & De Jong, K. A.2000. Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evolutionary Computation 8(1), 1–29.

Russell, S. J. & Norvig, P.2009. Artificial Intelligence: A Modern Approach, 3rd edition. Prentice Hall.

Sánchez-Velazco, J. & Bullinaria, J. A.2003. Gendered selection strategies in genetic algorithms for optimization. In Proceedings of the UK Workshop on Computational Intelligence (UKCI 2003), J. M. Rossiter & T. P. Martin (eds), University of Bristol, 217–223.

Sarker, R. & Ray, T.2010. Agent-Based Evolutionary Search (Adaptation, Learning and Optimization), vol. 5, 1st edition. Springer.

Schaefer, R., Byrski, A. & Smołka, M.2009. Stochastic model of evolutionary and immunological multi-agent systems: parallel execution of local actions. Fundamenta Informaticae 95(2–3), 325–348.

Schaefer, R. & Kołodziej, J.2003. Genetic search reinforced by the population hierarchy. Foundations of Genetic Algorithms 7, 383–399.

Siwik, L. & Dreżewski, R.2009. Agent-based multi-objective evolutionary algorithms with cultural and immunological mechanisms. In Evolutionary Computation, W. P. dos Santos (ed.), InTech, 541–556.

Siwik, L. & Natanek, S.2008. Solving constrained multi-criteria optimization tasks using elitist evolutionary multi-agent system. In *Proceedings of 2008 IEEE World Congress on Computational Intelligence (WCCI 2008), 2008 IEEE Congress on Evolutionary Computation (CEC 2008)*. IEEE Research Publishing Services, 3357–3364.

Uhruski, P., Grochowski, M. & Schaefer, R.2008. A two-layer agent-based system for large-scale distributed computation. Computational Intelligence 24(3), 191–212.

Van Veldhuizen, D. A.1999. *Multiobjective Evolutionary Algorithms: Classifications, Analyses and New Innovations*, PhD thesis, Graduate School of Engineering, Air Force Institute, Technology Air University.

Veldhuizen, D. A. V. & Lamont, G. B.2000. Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evolutionary Computation 8(2), 125–147.

Wierzchoń, S.2002. Function optimization by the immune metaphor. Task Quarterly 6(3), 1–16.

Wolpert, D. H. & Macready, W. G.1997. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82.

Wooldridge, M.2009. An Introduction to Multiagent Systems, John Wiley & Sons.

Zhong, W., Liu, J., Xue, M. & Jiao, L.2004. A multiagent genetic algorithm for global numerical optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 34(2), 1128–1141.

Zitzler, E.1999. *Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications*. PhD thesis, Swiss Federal Institute of Technology.