Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-30T01:36:15.834Z Has data issue: false hasContentIssue false

A DNA-sequence based phylogeny for triculine snails (Gastropoda: Pomatiopsidae: Triculinae), intermediate hosts for Schistosoma (Trematoda: Digenea): phylogeography and the origin of Neotricula

Published online by Cambridge University Press:  10 December 2003

S. W. Attwood
Affiliation:
Wolfson Wellcome Biomedical Laboratories, Department of Zoology, The Natural History Museum, London SW7 5BD, U.K.
E. S. Upatham
Affiliation:
Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
Y.-P. Zhang
Affiliation:
Key Laboratory of Cellular & Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, P.R. China
Z.-Q. Yang
Affiliation:
Key Laboratory of Cellular & Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China
V. R. Southgate
Affiliation:
Wolfson Wellcome Biomedical Laboratories, Department of Zoology, The Natural History Museum, London SW7 5BD, U.K.
Get access

Abstract

Partial (DNA) sequences were examined for one nuclear (28S rRNA gene) and one mitochondrial (16S rRNA) locus for nine species of pomatiopsid snail (Gastropoda: Rissooidea: Pomatiopsidae) from south-east Asia and south-west China. Fresh field samples were collected for the following taxa: Delavaya dianchiensis (Triculinae: Triculini) from Dianchi lake, Yunnan Province, China; Neotricula aperta (Triculinae: Pachydrobiini) from north-east Thailand; Neotricula burchi from northern Thailand; Oncomelania hupensis robertsoni (Pomatiopsinae: Pomatiopsini) from south-west China; Tricula bambooensis (Triculinae: Triculini) from Dianchi lake; Tricula bollingi from northern Thailand; Tricula hortensis from Sichuan Province, China; Tricula ludongbini from Dianchi lake; and Tricula xiaolongmenensis from Dianchi lake. This work represents the first published DNA-sequence data for the Dianchi lake taxa and the first 28S sequence data for all nine taxa. All of these taxa with the exception of N. burchi and the Dianchi taxa transmit Schistosoma in nature; N. aperta and O. h. robertsoni transmit Schistosoma to humans. The data were used to estimate phylogenies using the maximum likelihood method, a Bayesian method, and the maximum parsimony method. The paper aims to examine the relationships between N.aperta, N. burchi and T. bollingi and the relationship between the Chinese taxa and the south-east Asian taxa; these relationships being important in evaluating certain historical biogeographical hypotheses. Good congruence was found between the phylogenies estimated by the three methods for both the 16S and 28S loci. However, poor congruence was found between the phylogenies based on the 16S and 28S data when the maximum likelihood and Bayesian methods were used. The lack of congruence is explained as a consequence of a rapid, recent, endemic radiation of the Yunnanese Tricula spp.; this hypothesis is consistent with current historical biogeographical models for the Triculinae. The paper puts forward dispersal hypotheses, based on palaeogeographical changes, as possible explanations for the phylogenetic relationships estimated here and for the current biogeography of these taxa.

Type
Research Article
Copyright
© 2004 The Zoological Society of London

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)